FAIRCHILD

SEMICONDUCTOR

100364 Low Power 16-Input Multiplexer

General Description

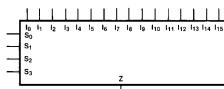
The 100364 is a 16-input multiplexer. Data paths are controlled by four Select lines $(S_0\text{--}S_3)$. Their decoding is shown in the Truth Table. Output data polarity is the same as the selected input data. All inputs have 50 k Ω pull-down resistors.

Features

- 35% power reduction of the 100164
- 2000V ESD protection
- Pin/function compatible with 100164
- Voltage compensated operating range = -4.2V to -5.7V

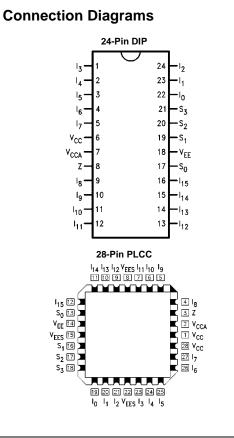
February 1990

Revised August 2000


Available to industrial grade temperature range

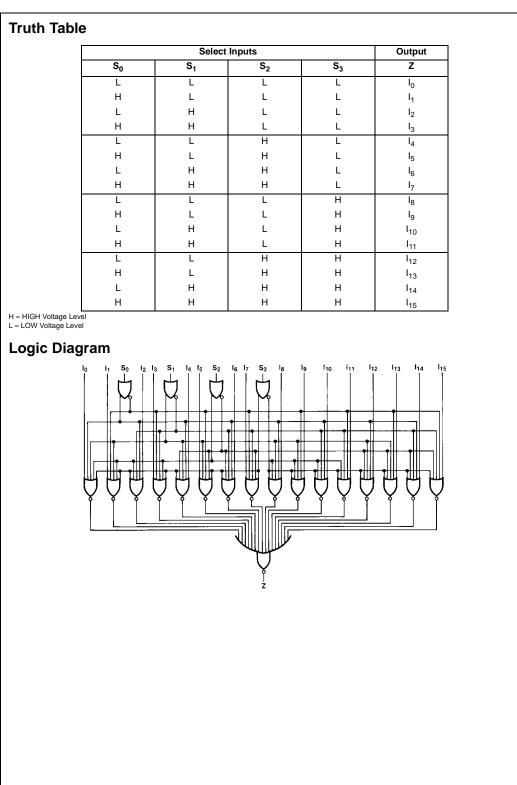
Ordering Code:

Order Number	Package Number	Package Description
100364PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
100364QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100364QI		28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (–40°C to +85°C)


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Pin Descriptions


Pin Names	Description
I ₀ -I ₁₅	Data Inputs
S ₀ -S ₃	Select Inputs
Z	Data Output

© 2000 Fairchild Semiconductor Corporation DS010265

www.fairchildsemi.com

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Storage Temperature (T _{STG})	–65°C to +150°C
Maximum Junction Temperature (T _J)	+150°C
Pin Potential to Ground Pin (V _{EE})	-7.0V to +0.5V
Input Voltage (DC)	V _{EE} to +0.5V
Output Current	
(DC Output HIGH)	–50 mA
ESD (Note 2)	≥ 2000V

Recommended Operating Conditions

Case Temperature (T _C)	
Commercial	0°C to +85°C
Industrial	-40°C to +85°C
Supply Voltage (V _{FF})	-5.7V to -4.2V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

$\mathsf{V}_{EE}=-4.2\mathsf{V}$ to $-5.7\mathsf{V},\,\mathsf{V}_{CC}=\mathsf{V}_{CCA}=GND,\,\mathsf{T}_{C}=0^{\circ}\mathsf{C}$ to +85°C Symbol Conditions Parameter Min Тур Max Units Output HIGH Voltage -1025 -955 -870 mV V_{OH} $V_{IN} = V_{IH}$ (Max) Loading with V_{OL} Output LOW Voltage -1830 -1705 -1620 mV or V_{IL} (Min) 50Ω to -2.0V V_{OHC} Output HIGH Voltage -1035 mV $V_{IN} = V_{IH}$ (Min) Loading with VOLC Output LOW Voltage -1610 m٧ or VIL (Max) 50Ω to -2.0V -1165 Input HIGH Voltage -870 Guaranteed HIGH Signal VIH m٧ for All Inputs Input LOW Voltage -1830 -1475 Guaranteed LOW Signal VIL mV for All Inputs Input LOW Current 0.5 μΑ $V_{IN} = V_{IL}$ (Min) Ι_{ΙL} $V_{IN} = V_{IH}$ (Max) $I_{\rm H}$ Input HIGH Current 300 μA Power Supply Current -45 Inputs OPEN -89 mΑ I_{EE}

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operate under "worst case" conditions.

DIP AC Electrical Characteristics

$V_{EE} = -4.2V$ to $-5.7V$,	$V_{CC} = V_{CCA} = GND$
-------------------------------	--------------------------

Symbol	Parameter	$\mathbf{T}_{\mathbf{C}} = 0^{\circ}\mathbf{C}$		T _C = +25°C		$T_C = +85^{\circ}C$		Units	Conditions
Cymbol		Min	Max	Min	Max	Min	Max	Onits	Conditions
t _{PLH}	Propagation Delay	0.90	2.00	0.90	2.00	0.90	2.10	ns	
t _{PHL}	I ₀ –I ₁₅ to Output	0.90	2.00	0.50	2.00	0.50	2.10	115	
t _{PLH}	Propagation Delay	1.40	2.80	1.40	2.80	1.50	2.90	ns	
t _{PHL}	S ₀ , S ₁ to Output	1.40	1.40 2.60	1.40	2.00	1.50	.50 2.90	115	Figures 1, 2
t _{PLH}	Propagation Delay	1.00	2.20	1.00	2.20	1.10	2.40	ns	
t _{PHL}	S ₂ , S ₃ to Output	1.00	2.20	1.00	2.20	1.10	2.40	115	
t _{TLH}	Transition Time	0.35	1.20	0.35	1.20	0.35	1.20	ns	
t _{THL}	20% to 80%, 80% to 20%	0.55	1.20	0.55	1.20	0.55	1.20	115	

100364

100364

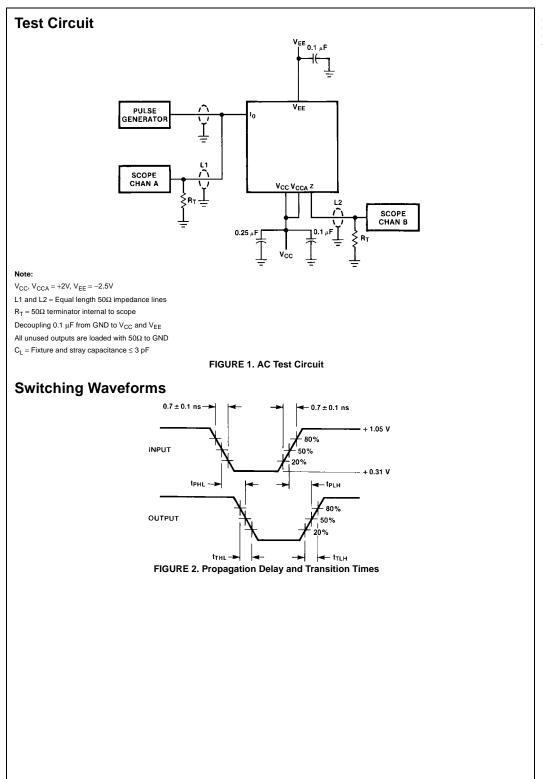
$\label{eq:commercial} \begin{array}{l} \mbox{Commercial Version (Continued)} \\ \mbox{PLCC AC Electrical Characteristics} \\ v_{EE} = -4.2V \ to -5.7V, \ v_{CC} = V_{CCA} = \mbox{GND} \end{array}$

Symbol	Parameter	T _C =	$\mathbf{T_C} = 0^{\circ}\mathbf{C}$		$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Conditions
		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH} t _{PHL}	Propagation Delay I ₀ –I ₁₅ to Output	0.90	1.80	0.90	1.80	0.90	1.90	ns	
t _{PLH} t _{PHL}	Propagation Delay S ₀ , S ₁ to Output	1.40	2.60	1.40	2.60	1.50	2.70	ns	Figures 1, 2
t _{PLH} t _{PHL}	Propagation Delay S ₂ , S ₃ to Output	1.00	2.00	1.00	2.00	1.10	2.20	ns	rigures 1, 2
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	

Industrial Version

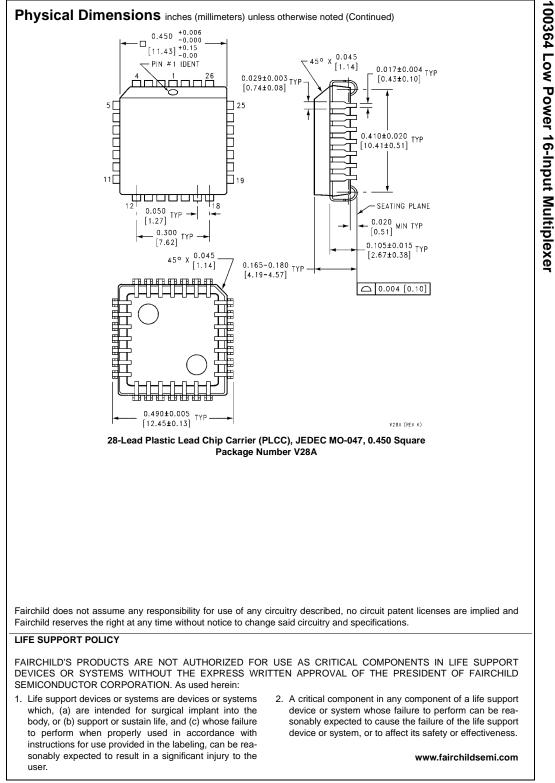
PLCC DC Electrical Characteristics (Note 4)

 $\mathsf{V}_{\mathsf{EE}}=-4.2\mathsf{V}$ to $-5.7\mathsf{V},\,\mathsf{V}_{\mathsf{CC}}=\mathsf{V}_{\mathsf{CCA}}=\mathsf{GND},\,\mathsf{T}_{\mathsf{C}}=-40^\circ\mathsf{C}$ to $+85^\circ\mathsf{C}$


Symbol	Parameter	T _C = -	$T_C = -40^{\circ}C$		$T_C = 0^{\circ}C$ to $+85^{\circ}C$		Conditions		
Symbol		Min	Max	Min	Max	Units	Conditions		
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	V _{IN} = V _{IH} (Max)	Loading with	
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV	or V _{IL} (Min)	50Ω to -2.0V	
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	V _{IN} = V _{IH} (Min)	Loading with	
V _{OLC}	Output LOW Voltage		-1565		-1610	mV	or V _{IL} (Max)	50 Ω to –2.0V	
VIH	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Sig	nal for All Inputs	
VIL	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Sig	nal for All Inputs	
IIL	Input LOW Current	0.5		0.5		μA	$V_{IN} = V_{IL}$ (Min)		
I _{IH}	Input HIGH Current		325		325	μA	V _{IN} = V _{IH} (Max)		
I _{EE}	Power Supply Current	-89	-45	-89	-45	mA	Inputs OPEN		

Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are cho-sen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics


 $\mathsf{V}_{EE}=-4.2\mathsf{V}$ to $-5.7\mathsf{V},\ \mathsf{V}_{CC}=\mathsf{V}_{CCA}=\mathsf{GND}$

Symbol	Parameter	T _C = -40°C		$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Units	Conditions
Cymbol		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH}	Propagation Delay	0.90	1.80	0.90	1.80	0.90	1.90	ns	
t _{PHL}	I ₀ –I ₁₅ to Output	0.30	0.90 1.60	0.90	1.00	0.30	1.50	115	I
t _{PLH}	Propagation Delay	1.20	2.60	1.40	2.60	1.50	2.70	ns	
t _{PHL}	S ₀ , S ₁ to Output	1.20	.20 2.00	1.40	1.40 2.00	1.50	2.70	115	Figures 1, 2
t _{PLH}	Propagation Delay	0.80	2.10	1.00	2.00	1.10	2.20		rigules 1, 2
t _{PHL}	S ₂ , S ₃ to Output	0.60	2.10	1.00	2.00	1.10	2.20	ns	
t _{TLH}	Transition Time	0.20	1.20	0.35	1.10	0.35	1.10	ns	
t _{THL}	20% to 80%, 80% to 20%	0.20	1.20	0.35	1.10	0.35	1.10	115	

www.fairchildsemi.com

www.fairchildsemi.com