ChipFind - документация

Электронный компонент: SPx20N60C2

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
2002-08-12
Page 1
SPP20N60C2, SPB20N60C2
SPA20N60C2
Final data
Cool MOSTM



Power Transistor
Feature
New revolutionary high voltage technology
Worldwide best R
DS(on)
in TO 220
Ultra low gate charge
Periodic avalanche rated
Extreme dv/dt rated
Ultra low effective capacitances
Product Summary
650
V
R
DS(on)
0.19
I
D
20
A
V
DS
@ T
jmax
P-TO220-3-31
P-TO220-3-1
P-TO263-3-2
P-TO220-3-31
1
2
3
Marking
20N60C2
20N60C2
20N60C2
Type
Package
Ordering Code
SPP20N60C2
P-TO220-3-1
Q67040-S4320
SPB20N60C2
P-TO263-3-2
Q67040-S4322
SPA20N60C2
P-TO220-3-31 Q67040-S4333
Maximum Ratings
Parameter
Symbol
Value
Unit
SPA
Continuous drain current
T
C
= 25 C
T
C
= 100 C
I
D
20
13
20
1)
13
1)
A
Pulsed drain current, t
p
limited by T
jmax
I
D puls
40
40
A
Avalanche energy, single pulse
I
D
=10A,
V
DD
=50V
E
AS
690
690
mJ
Avalanche energy, repetitive t
AR
limited by T
jmax
2)
I
D
=20A,
V
DD
=50V
E
AR
1
1
Avalanche current, repetitive t
AR
limited by T
jmax
I
AR
20
20
A
Reverse diode dv/dt
I
S
= 20 A,
V
DS
<
V
DD
, d
i
/d
t
=100A/
s,
T
jmax
=150C
dv/dt
6
6
V/ns
Gate source voltage
V
GS
20
20
V
Gate source voltage AC (f >1Hz)
V
GS
30
30
Power dissipation,
T
C
= 25C
P
tot
208
34.5
W
SPP_B
Operating and storage temperature
T
j ,
T
stg
-55...+150
C
background image
2002-08-12
Page 2
SPP20N60C2, SPB20N60C2
SPA20N60C2
Final data
Thermal Characteristics
Parameter
Symbol
Values
Unit
min.
typ.
max.
Characteristics
Thermal resistance, junction - case
R
thJC
-
-
0.6
K/W
Thremal resistance, junction - case, FullPAK
R
thJC_FP
-
-
3.6
Thermal resistance, junction - ambient, leaded
R
thJA
-
-
62
Thermal resistance, junction - ambient, FullPAK
R
thJA_FP
-
-
80
SMD version, device on PCB:
@ min. footprint
@ 6 cm
2
cooling area
3)
R
thJA
-
-
-
35
62
-
Linear derating factor
-
-
1.67
W/K
Linear derating factor, FullPAK
-
-
0.28
Soldering temperature,
1.6 mm (0.063 in.) from case for 10s
T
sold
-
-
260
C
Electrical Characteristics, at T
j
= 25 C, unless otherwise specified
Static Characteristics
Drain-source breakdown voltage
V
GS
=0V, I
D
=0.25mA
V
(BR)DSS
600
-
-
V
Drain-source avalanche breakdown voltage
V
GS
=0V, I
D
=20A
V
(BR)DS
-
700
-
Gate threshold voltage, V
GS
= V
DS
I
D
=1mA
V
GS(th)
3.5
4.5
5.5
Zero gate voltage drain current
V
DS
= 600 V, V
GS
= 0 V, T
j
= 25 C
V
DS
= 600 V, V
GS
= 0 V, T
j
= 150 C
I
DSS
-
-
0.1
-
1
100
A
Gate-source leakage current
V
GS
=20V, V
DS
=0V
I
GSS
-
-
100
nA
Drain-source on-state resistance
V
GS
=10V, I
D
=13A, T
j
=25C
R
DS(on)
-
0.16
0.19
Gate input resistance
f = 1 MHz, open drain
R
G
-
0.54
-
background image
2002-08-12
Page 3
SPP20N60C2, SPB20N60C2
SPA20N60C2
Final data
Electrical Characteristics
Parameter
Symbol
Conditions
Values
Unit
min.
typ.
max.
Characteristics
Transconductance
g
fs
V
DS
2*I
D
*R
DS(on)max
,
I
D
=13A
-
12
-
S
Input capacitance
C
iss
V
GS
=0V, V
DS
=25V,
f=1MHz
-
3000
-
pF
Output capacitance
C
oss
-
1170
-
Reverse transfer capacitance
C
rss
-
28
-
Effective output capacitance,
4)
energy related
C
o(er)
V
GS
=0V,
V
DS
=0V to 480V
-
83
-
Effective output capacitance,
5)
time related
C
o(tr)
-
160
-
Turn-on delay time
t
d(on)
V
DD
=380V, V
GS
=0/13V,
I
D
=20A,
R
G
=3.6
, T
j
=125C
-
21
-
ns
Rise time
t
r
-
51
-
Turn-off delay time
t
d(off)
-
56
84
Fall time
t
f
-
6
9
Gate Charge Characteristics
Gate to source charge
Q
gs
V
DD
=350V, I
D
=20A
-
21
-
nC
Gate to drain charge
Q
gd
-
46
-
Gate charge total
Q
g
V
DD
=350V, I
D
=20A,
V
GS
=0 to 10V
-
79
103
Gate plateau voltage
V
(plateau)
V
DD
=350V, I
D
=20A
-
8
-
V
1Limited only by maximum temperature
2Repetitve avalanche causes additional power losses that can be calculated as P
AV
=E
AR
*f.
3Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70 m thick) copper area for drain
connection. PCB is vertical without blown air.
4C
o(er)
is a fixed capacitance that gives the same stored energy as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
5C
o(tr)
is a fixed capacitance that gives the same charging time as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
background image
2002-08-12
Page 4
SPP20N60C2, SPB20N60C2
SPA20N60C2
Final data
Electrical Characteristics
Parameter
Symbol
Conditions
Values
Unit
min.
typ.
max.
Characteristics
Inverse diode continuous
forward current
I
S
T
C
=25C
-
-
20
A
Inverse diode direct current,
pulsed
I
SM
-
-
40
Inverse diode forward voltage
V
SD
V
GS
=0V, I
F
=I
S
-
1
1.2
V
Reverse recovery time
t
rr
V
R
=350V, I
F
=I
S
,
di
F
/dt=100A/s
-
610
1040 ns
Reverse recovery charge
Q
rr
-
12
-
C
Peak reverse recovery current
I
rrm
-
48
-
A
Peak rate of fall of reverse
recovery current
di
rr
/dt
T
j
=25C
-
1500
-
A/s
Typical Transient Thermal Characteristics
Symbol
Value
Unit
Symbol
Value
Unit
SPA
SPA
R
th1
0.007416
0.077
K/W
C
th1
0.0004409
0.000376
Ws/K
R
th2
0.016
0.015
C
th2
0.001462
0.00141
R
th3
0.021
0.022
C
th3
0.0024
0.00192
R
th4
0.06
0.063
C
th4
0.003031
0.00332
R
th5
0.083
0.214
C
th5
0.02
0.019
R
th6
0.038
2.479
C
th6
0.146
0.412
SPP_B
SPP_B
External Heatsink
T
j
T
case
T
am b
C
th1
C
th2
R
th1
R
th,n
C
th,n
P
tot
(t)
background image
2002-08-12
Page 5
SPP20N60C2, SPB20N60C2
SPA20N60C2
Final data
1 Power dissipation
P
tot
= f (T
C
)
0
20
40
60
80
100
120
C
160
T
C
0
20
40
60
80
100
120
140
160
180
200
W
240
SPP20N60C2
P
tot
2 Power dissiaption FullPAK
P
tot
= f (T
C
)
0
20
40
60
80
100
120
C
160
T
C
0
5
10
15
20
25
W
35

P
tot
3 Safe operating area
I
D
= f ( V
DS
)
parameter : D = 0 , T
C
=25C
10
0
10
1
10
2
10
3
V
V
DS
-2
10
-1
10
0
10
1
10
2
10
A

I
D
tp = 0.001 ms
tp = 0.01 ms
tp = 0.1 ms
tp = 1 ms
DC
4 Safe operating area FullPAK
I
D
= f (V
DS
)
parameter: D = 0, T
C
= 25C
10
0
10
1
10
2
10
3
V
V
DS
-2
10
-1
10
0
10
1
10
2
10
A

I
D
tp = 0.001 ms
tp = 0.01 ms
tp = 0.1 ms
tp = 1 ms
tp = 10 ms
DC
background image
2002-08-12
Page 6
SPP20N60C2, SPB20N60C2
SPA20N60C2
Final data
5 Transient thermal impedance
Z
thJC
= f (t
p
)
parameter: D = t
p
/T
10
-7
10
-6
10
-5
10
-4
10
-3
10
-2
10
0
s
t
p
-4
10
-3
10
-2
10
-1
10
0
10
K/W
Z
thJC
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
single pulse
6 Transient thermal impedance FullPAK
Z
thJC
= f (t
p
)
parameter: D = t
p
/t
10
-6
10
-5
10
-4
10
-3
10
-2
10
-1
10
1
s
t
p
-3
10
-2
10
-1
10
0
10
1
10
K/W

Z
thJC
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
single pulse
7 Typ. output characteristic
I
D
= f (V
DS
); T
j
=25C
parameter: t
p
= 10 s, V
GS
0
5
10
15
20
V
30
V
DS
0
5
10
15
20
25
30
35
40
45
50
55
60
A
75

I
D
10V
9V
8V
7V
20V
15V
12V
11V
8 Typ. output characteristic
I
D
= f (V
DS
); T
j
=150C
parameter: t
p
= 10 s, V
GS
0
5
10
15
V
25
V
DS
0
5
10
15
20
25
A
35

I
D
6V
6.5V
7V
7.5V
8V
8.5V
9V
20V
12V
10V
background image
2002-08-12
Page 7
SPP20N60C2, SPB20N60C2
SPA20N60C2
Final data
9 Typ. drain-source on resistance
R
DS(on)
=f(I
D
)
parameter: T
j
=150C, V
GS
0
5
10
15
20
25
30
A
40
I
D
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.5
R
DS(on)
6V
6.5V
7V
7.5V
8V
8.5V
9V
10V
12V
20V
10 Drain-source on-state resistance
R
DS(on)
= f (T
j
)
parameter : I
D
= 13 A, V
GS
= 10 V
-60
-20
20
60
100
C
180
T
j
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.1
SPP20N60C2
R
DS(on)
typ
98%
11 Typ. transfer characteristics
I
D
= f ( V
GS
); V
DS
2 x I
D
x R
DS(on)max
parameter: t
p
= 10 s
0
5
10
V
20
V
GS
0
5
10
15
20
25
30
35
40
45
50
55
60
A
70

I
D
25C
150C
12 Typ. gate charge
V
GS
= f (Q
Gate
)
parameter: I
D
= 20 A pulsed
0
20
40
60
80
nC
120
Q
Gate
0
2
4
6
8
10
12
V
16
SPP20N60C2
V
GS
0,8 V
DS max
DS max
V
0,2
background image
2002-08-12
Page 8
SPP20N60C2, SPB20N60C2
SPA20N60C2
Final data
13 Forward characteristics of body diode
I
F
= f (V
SD
)
parameter: Tj , t
p
= 10 s
0
0.4
0.8
1.2
1.6
2
2.4
V
3
V
SD
-1
10
0
10
1
10
2
10
A
SPP20N60C2
I
F
T
j
= 25 C typ
T
j
= 25 C (98%)
T
j
= 150 C typ
T
j
= 150 C (98%)
14 Typ. switching time
t = f (I
D
), inductive load, T
j
=125C
par.: V
DS
=380V, V
GS
=0/+13V, R
G
=3.6
0
5
10
15
20
25
30
35
40
A
50
I
D
0
10
1
10
2
10
3
10
ns

t
t
r
t
d(off)
t
d(on)
t
f
15 Typ. switching time
t = f (R
G
), inductive load, T
j
=125C
par.: V
DS
=380V, V
GS
=0/+13V, I
D
=20A
0
5
10
15
20
25
30
40
R
G
0
10
1
10
2
10
3
10
ns

t
t
d(off)
t
d(on)
t
r
t
f
16 Typ. switching losses
1)
E = f (I
D
), inductive load, T
j
=125C
par.: V
DS
=380V, V
GS
=0/+13V, R
G
=3.6
0
5
10
15
20
25
30
35
A
45
I
D
0
0.2
0.4
0.6
0.8
1
1.2
mWs
1.6

E
*) E
on
includes SDP06S60 diode
commutation losses.
1
This chart helps to estimate
the switching power losses.
The values can be different
under other operating conditions.
E
on
*
E
off
background image
2002-08-12
Page 9
SPP20N60C2, SPB20N60C2
SPA20N60C2
Final data
17 Typ. switching losses
1)
E = f(R
G
), inductive load, T
j
=125C
par.: V
DS
=380V, V
GS
=0/+13V,I
D
=20A
0
5
10
15
20
25
30
40
R
G
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
mWs
1

E
E
on
*
E
off
*) E
on
includes SDP06S60 diode
commutation losses.
1
This chart helps to estimate
the switching power losses.
The values can be different
under other operating conditions.
18 Avalanche SOA
I
AR
= f (t
AR
)
par.: T
j
150 C
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
4
s
t
AR
0
5
10
A
20
I
AR
T
j(START)
=25C
T
j(START)
=125C
19 Avalanche energy
E
AS
= f (T
j
)
par.: I
D
= 10 A, V
DD
= 50 V
20
40
60
80
100
120
C
160
T
j
0
50
100
150
200
250
300
350
400
450
500
550
600
mJ
750
E
AS
20 Drain-source breakdown voltage
V
(BR)DSS
= f (T
j
)
-60
-20
20
60
100
C
180
T
j
540
560
580
600
620
640
660
680
V
720
SPP20N60C2
V
(BR)DSS
background image
2002-08-12
Page 10
SPP20N60C2, SPB20N60C2
SPA20N60C2
Final data
21 Avalanche power losses
P
AR
= f (f )
parameter: E
AR
=1mJ
10
4
10
5
10
6
Hz
f
0
100
200
300
W
500

P
AR
22 Typ. capacitances
C = f (V
DS
)
parameter: V
GS
=0V, f=1 MHz
0
100
200
300
400
V
600
V
DS
0
10
1
10
2
10
3
10
4
10
5
10
pF

C
C
iss
C
oss
C
rss
23 Typ. C
oss
stored energy
E
oss
=f(V
DS
)
0
100
200
300
400
V
600
V
DS
0
1
2
3
4
5
6
7
8
9
10
11
12
J
14

E
oss
background image
2002-08-12
Page 11
SPP20N60C2, SPB20N60C2
SPA20N60C2
Final data
Definition of diodes switching characteristics
background image
2002-08-12
Page 12
SPP20N60C2, SPB20N60C2
SPA20N60C2
Final data
P-TO-220-3-1
A
B
A
0.25
M
2.8
15.38
0.6
2.54
0.75
0.1
0.13
1.27
4.44
B
9.98
0.48
0.05
All metal surfaces tin plated, except area of cut.
C
0.2
10
0.4
3.7
C
0.5
0.1
0.9
5.23
13.5
0.5
3x
Metal surface min. x=7.25, y=12.3
2x
0.2
0.22
1.17
0.2
2.51
P-TO-263-3-1 (D
2
-PAK)
MAX.
B
A
0.25
M
0.1
Typical
0.2
10
8.5
1)
7.55
1)
(15)
0.2
9.25
0.3
1
0...0.15
5.08
2.54
0.75
0.1
1.05
0.1
1.27
4.4
B
0.5
0.1
0.3
2.7
4.7
0.5
0.05
1)
0.1
All metal surfaces: tin plated, except area of cut.
2.4
Metal surface min. x=7.25, y=6.9
A
0...0.3
B
8
background image
2002-08-12
Page 13
SPP20N60C2, SPB20N60C2
SPA20N60C2
Final data
P-TO-220-3-31 (FullPAK)
10.5
0.005
0.005
12.79
14.1
0.005
0.005
15.99
2.54
13.6
0.005
2.7
4.7
9.68
3.3
0.005
0.005
0.005
0.005
6.1
0.002
1.5
0.001
1.28
-0.002
+0.003
-0.002
+0.003
0.7
+0.005
-0.002
0.5
2.57
0.002
1 2 3
7
Please refer to mounting instructions (application note AN-TO220-3-31-01)
background image
2002-08-12
Page 14
SPP20N60C2, SPB20N60C2
SPA20N60C2
Final data
Published by
Infineon Technologies AG,
Bereichs Kommunikation
St.-Martin-Strasse 53,
D-81541 Mnchen
Infineon Technologies AG 1999
All Rights Reserved.

Attention please!
The information herein is given to describe certain components and shall not be considered as warranted
characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).

Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.