ChipFind - документация

Электронный компонент: IRF634N

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
8.0
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
5.6
A
I
DM
Pulsed Drain Current
32
P
D
@T
C
= 25C
Power Dissipation
88
W
P
D
@T
A
= 25C
Power Dissipation
3.8
Linear Derating Factor
0.59
W/C
V
GS
Gate-to-Source Voltage
20
V
E
AS
Single Pulse Avalanche Energy
110
mJ
I
AR
Avalanche Current
4.8
A
E
AR
Repetitive Avalanche Energy
8.8
mJ
dv/dt
Peak Diode Recovery dv/dt
7.3
V/ns
T
J
Operating Junction and
-55 to +175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Mounting torque, 6-32 or M3 srew
10 lbfin (1.1Nm)
HEXFET
Power MOSFET
9/10/01
Absolute Maximum Ratings
Description
V
DSS
= 250V
R
DS(on)
= 0.435
I
D
= 8.0A
S
D
G
l
Advanced Process Technology
l
Dynamic dv/dt Rating
l
175C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
l
Ease of Paralleling
l
Simple Drive Requirements
D
2
Pak
IRF634NS
TO-220AB
IRF634N
TO-262
IRF634NL
IRF634N
IRF634NS
IRF634NL
Fifth Generation HEXFET
Power MOSFETs from International
Rectifier utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized device
design that HEXFET Power MOSFETs are well known for,
provides the designer with an extremely efficient and reliable
device for use in a wide variety of applications.
The TO-220 package is universally preferred for all commercial-
industrial applications at power dissipation levels to
approximately 50 watts. The low thermal resistance and low
package cost of the TO-220 contribute to its wide acceptance
throughout the industry.
The D
2
Pak is a surface mount power package capable of
accommodating die sizes up to HEX-4. It provides the highest
power capability and the lowest possible on-resistance in any
existing surface mount package. The D
2
Pak is suitable for high
current applications because of its low internal connection
resistance and can dissipate up to 2.0W in a typical surface
mount application.
The through-hole version (IRF634NL) is available for low-
profile application.
www.irf.com
1
PD - 94310
background image
IRF634N/S/L
2
www.irf.com
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 4.8A, V
GS
= 0V
t
rr
Reverse Recovery Time
130
200
ns
T
J
= 25C, I
F
= 4.8A
Q
rr
Reverse Recovery Charge
650
980
nC
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
8.0
32
A
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
250
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.33
V/C
Reference to 25C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
0.435
V
GS
= 10V, I
D
= 4.8A
V
GS(th)
Gate Threshold Voltage
2.0
4.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
5.4
S
V
DS
= 50V, I
D
= 4.8A
25
A
V
DS
= 250V, V
GS
= 0V
250
V
DS
= 200V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 20V
Gate-to-Source Reverse Leakage
-100
nA
V
GS
= -20V
Q
g
Total Gate Charge
34
I
D
= 4.8A
Q
gs
Gate-to-Source Charge
6.5
nC
V
DS
= 200V
Q
gd
Gate-to-Drain ("Miller") Charge
16
V
GS
= 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
8.4
V
DD
= 125V
t
r
Rise Time
16
I
D
= 4.8A
t
d(off)
Turn-Off Delay Time
28
R
G
= 1.3
t
f
Fall Time
15
V
GS
= 10V, See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
620
V
GS
= 0V
C
oss
Output Capacitance
84
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
23
pF
= 1.0MHz, See Fig. 5
nH
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
L
D
Internal Drain Inductance
L
S
Internal Source Inductance
S
D
G
I
GSS
ns
4.5
7.5
I
DSS
Drain-to-Source Leakage Current
Thermal Resistance
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
1.7
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
C/W
R
JA
Junction-to-Ambient
62
R
JA
Junction-to-Ambient (PCB mount)
40
background image
IRF634N/S/L
www.irf.com
3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.01
0.1
1
10
100
0.1
1
10
100
20s PULSE WIDTH
T = 25 C
J
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
0.1
1
10
100
0.1
1
10
100
20s PULSE WIDTH
T = 175 C
J
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
0.1
1
10
100
4.0
5.0
6.0
7.0
8.0
9.0
V = 50V
20s PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J
T = 175 C
J
-60 -40 -20
0
20
40
60
80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
V
=
I =
GS
D
10V
7.9A
background image
IRF634N/S/L
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0.1
1
10
100
0.2
0.4
0.6
0.8
1.0
1.2
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J
T = 175 C
J
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
0
200
400
600
800
1000
1200
C, Capacitance(pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0
10
20
30
40
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
4.8A
V
= 50V
DS
V
= 125V
DS
V
= 200V
DS
1
10
100
1000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
I D
, Drain-to-Source Current (A)
Tc = 25C
Tj = 175C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100sec
background image
IRF634N/S/L
www.irf.com
5
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
Notes:
1. Duty factor D =
t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
25
50
75
100
125
150
175
0.0
2.0
4.0
6.0
8.0
10.0
T , Case Temperature ( C)
I , Drain Current (A)
C
D