ChipFind - документация

Электронный компонент: IRF6610

Скачать:  PDF   ZIP
www.irf.com
1
05/25/05
IRF6610
DirectFETTM Power MOSFET
Description
The IRF6610 combines the latest HEXFET Power MOSFET Silicon technology with the advanced DirectFET
TM
packaging to achieve the
lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6610 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching
losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors
operating at higher frequencies. The IRF6610 has been optimized for parameters that are critical in synchronous buck operating from 12 volt
buss converters including Rds(on) and gate charge to minimize losses in the control FET socket.
PD - 97012
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
Fig 1. Typical On-Resistance vs. Gate Voltage
Typical values (unless otherwise specified)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
Lead and Bromide Free
Low Profile (<0.7 mm)
Dual Sided Cooling Compatible
Ultra Low Package Inductance
Optimized for High Frequency Switching
Ideal for CPU Core DC-DC Converters
Optimized for both Sync.FET and some Control FET
application
Low Conduction and Switching Losses
Compatible with existing Surface Mount Techniques
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
T
C
measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting T
J
= 25C, L = 0.18mH, R
G
= 25
, I
AS
= 12A.
Notes:
SQ
SX
ST
MQ
MX
MT
MP
3
4
5
6
7
8
9
10
VGS, Gate -to -Source Voltage (V)
0
5
10
15
20
25
30
T
y
p
i
c
a
l

R
D
S
(
o
n
)
(
m
)
ID = 15A
TJ = 25C
TJ = 125C
V
DSS
V
GS
R
DS(on)
R
DS(on)
20V max 20V max 5.2m
@ 10V 8.2m@ 4.5V
Absolute Maximum Ratings
Parameter
Units
V
DS
Drain-to-Source Voltage
V
V
GS
Gate-to-Source Voltage
I
D
@ T
A
= 25C
Continuous Drain Current, V
GS
@ 10V
I
D
@ T
A
= 70C
Continuous Drain Current, V
GS
@ 10V
A
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
I
DM
Pulsed Drain Current
E
AS
Single Pulse Avalanche Energy
mJ
I
AR
Avalanche Current
A
12
Max.
12
66
120
20
20
15
13
0
2
4
6
8
10
12
14
16
QG Total Gate Charge (nC)
0.0
1.0
2.0
3.0
4.0
5.0
6.0
V
G
S
,

G
a
t
e
-
t
o
-
S
o
u
r
c
e

V
o
l
t
a
g
e

(
V
)
VDS= 16V
VDS= 10V
ID= 12A
Q
g tot
Q
gd
Q
gs2
Q
rr
Q
oss
V
gs(th)
11nC
3.6nC
1.3nC
6.4nC
5.9nC
2.1V
DirectFETTM ISOMETRIC
SQ
IRF6610
2
www.irf.com
Pulse width
400s; duty cycle 2%.
Repetitive rating; pulse width limited by max. junction temperature.
Notes:
Static @ T
J
= 25C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
BV
DSS
Drain-to-Source Breakdown Voltage
20
V
V
DSS
/
T
J
Breakdown Voltage Temp. Coefficient
15
mV/C
R
DS(on)
Static Drain-to-Source On-Resistance
5.2
6.8
m
8.2
10.7
V
GS(th)
Gate Threshold Voltage
1.65
2.1
2.55
V
V
GS(th)
/
T
J
Gate Threshold Voltage Coefficient
-5.2
mV/C
I
DSS
Drain-to-Source Leakage Current
1.0
A
150
I
GSS
Gate-to-Source Forward Leakage
100
nA
Gate-to-Source Reverse Leakage
-100
gfs
Forward Transconductance
41
S
Q
g
Total Gate Charge
11
17
Q
gs1
Pre-Vth Gate-to-Source Charge
3.9
Q
gs2
Post-Vth Gate-to-Source Charge
1.3
nC
Q
gd
Gate-to-Drain Charge
3.6
Q
godr
Gate Charge Overdrive
2.4
See Fig. 15
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)
4.9
Q
oss
Output Charge
5.9
nC
R
G
Gate Resistance
2.0
t
d(on)
Turn-On Delay Time
12
t
r
Rise Time
51
t
d(off)
Turn-Off Delay Time
15
ns
t
f
Fall Time
5.7
C
iss
Input Capacitance
1520
C
oss
Output Capacitance
440
pF
C
rss
Reverse Transfer Capacitance
220
Diode Characteristics
Parameter
Min. Typ. Max. Units
I
S
Continuous Source Current
2.8
(Body Diode)
A
I
SM
Pulsed Source Current
120
(Body Diode)
V
SD
Diode Forward Voltage
1.0
V
t
rr
Reverse Recovery Time
12
18
ns
Q
rr
Reverse Recovery Charge
2.4
3.6
nC
di/dt = 100A/s
T
J
= 25C, I
S
= 12A, V
GS
= 0V
showing the
integral reverse
p-n junction diode.
V
GS
= 4.5V, I
D
= 12A
V
DS
= V
GS
, I
D
= 250A
T
J
= 25C, I
F
= 12A
V
GS
= 4.5V
I
D
= 12A
V
GS
= 0V
V
DS
= 10V
I
D
= 12A
V
DD
= 16V, V
GS
= 4.5V
Conditions
V
GS
= 0V, I
D
= 250A
Reference to 25C, I
D
= 1mA
V
GS
= 10V, I
D
= 15A
V
GS
= 20V
V
GS
= -20V
V
DS
= 16V, V
GS
= 0V
V
DS
= 10V
V
DS
= 16V, V
GS
= 0V, T
J
= 125C
MOSFET symbol
Clamped Inductive Load
V
DS
= 10V, I
D
= 12A
Conditions
= 1.0MHz
V
DS
= 10V, V
GS
= 0V
IRF6610
www.irf.com
3
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Surface mounted on 1 in. square Cu board, steady state.
Used double sided cooling , mounting pad.
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Notes:
T
C
measured with thermocouple incontact with top (Drain) of part.
R
is measured at
T
J
of approximately 90C.
Surface mounted on 1 in. square Cu
board (still air).
Mounted to a PCB with
small clip heatsink (still air)
Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
100
T
h
e
r
m
a
l

R
e
s
p
o
n
s
e

(
Z

t
h
J
A
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
Ri (C/W)
i (sec)
1.6195 0.000126
2.14056 0.001354
22.2887 0.375850
20.0457 7.41
11.9144 99
J
J
1
1
2
2
3
3
R
1
R
1
R
2
R
2
R
3
R
3
Ci=
i/Ri
Ci=
i/Ri
4
4
R
4
R
4
A
A
5
5
R
5
R
5
Absolute Maximum Ratings
Parameter
Units
P
D
@T
A
= 25C
Power Dissipation
W
P
D
@T
A
= 70C
Power Dissipation
P
D
@T
C
= 25C
Power Dissipation
T
P
Peak Soldering Temperature
C
T
J
Operating Junction and
T
STG
Storage Temperature Range
Thermal Resistance
Parameter
Typ.
Max.
Units
R
JA
Junction-to-Ambient
58
R
JA
Junction-to-Ambient
12.5
R
JA
Junction-to-Ambient
20
C/W
R
JC
Junction-to-Case
3.0
R
J-PCB
Junction-to-PCB Mounted
1.4
Linear Derating Factor
W/C
0.017
270
-40 to + 150
Max.
42
2.2
1.4
IRF6610
4
www.irf.com
Fig 5. Typical Output Characteristics
Fig 4. Typical Output Characteristics
Fig 6. Typical Transfer Characteristics
Fig 7. Normalized On-Resistance vs. Temperature
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
Fig 9. Typical On-Resistance Vs.
Drain Current and Gate Voltage
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
VGS
TOP 10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
BOTTOM
2.5V
60s PULSE WIDTH
Tj = 25C
2.5V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
2.5V
60s PULSE WIDTH
Tj = 150C
VGS
TOP 10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
BOTTOM
2.5V
1
2
3
4
5
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
)
TJ = 150C
TJ = 25C
TJ = -40C
VDS = 10V
60s PULSE WIDTH
-60 -40 -20 0 20 40 60 80 100 120 140 160
TJ , Junction Temperature (C)
0.5
1.0
1.5
T
y
p
i
c
a
l

R
D
S
(
o
n
)
(
N
o
r
m
a
l
i
z
e
d
)
ID = 15A
VGS = 10V
VGS = 4.5V
1
10
100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
C
,

C
a
p
a
c
i
t
a
n
c
e
(
p
F
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0
20
40
60
80
100
120
140
ID, Drain Current (A)
0
10
20
30
40
T
y
p
i
c
a
l

R
D
S
(
o
n
)

(
m
)
TJ = 25C
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
IRF6610
www.irf.com
5
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 10. Typical Source-Drain Diode Forward Voltage
Fig11. Maximum Safe Operating Area
Fig 14. Maximum Avalanche Energy Vs. Drain Current
-75 -50 -25
0
25
50
75 100 125 150
TJ , Temperature ( C )
1.0
1.5
2.0
2.5
T
y
p
i
c
a
l

V
G
S
(
t
h
)
G
a
t
e

t
h
r
e
s
h
o
l
d

V
o
l
t
a
g
e

(
V
)
ID = 250A
25
50
75
100
125
150
Starting TJ , Junction Temperature (C)
0
10
20
30
40
50
60
E
A
S
,
S
i
n
g
l
e

P
u
l
s
e

A
v
a
l
a
n
c
h
e

E
n
e
r
g
y

(
m
J
)
ID
TOP
3.6A
5.3A
BOTTOM 12A
0.10
1.00
10.00
100.00
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
I D
,


D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
OPERATION IN THIS AREA
LIMITED BY RDS(on)
TA = 25C
TJ = 150C
Single Pulse
100sec
1msec
10msec
25
50
75
100
125
150
TC , Case Temperature (C)
0
10
20
30
40
50
60
70
I D
,
D
r
a
i
n

C
u
r
r
e
n
t

(
A
)
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
VSD, Source-to-Drain Voltage (V)
0
1
10
100
1000
I S
D
,

R
e
v
e
r
s
e

D
r
a
i
n

C
u
r
r
e
n
t

(
A
)
TJ = 150C
TJ = 25C
TJ = -40C
VGS = 0V