ChipFind - документация

Электронный компонент: IRF6636

Скачать:  PDF   ZIP
www.irf.com
1
06/13/05
IRF6636
DirectFETTM Power MOSFET
Description
The IRF6636 combines the latest HEXFET Power MOSFET Silicon technology with the advanced DirectFET
TM
packaging to achieve the
lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6636 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching
losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors
operating at higher frequencies. The IRF6636 has been optimized for parameters that are critical in synchronous buck operating from 12 volt
buss converters including Rds(on) and gate charge to minimize losses in the control FET socket.
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
Fig 1. Typical On-Resistance vs. Gate Voltage
Typical values (unless otherwise specified)
Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage
RoHS compliant containing no lead or bromide
Low Profile (<0.7 mm)
Dual Sided Cooling Compatible
Ultra Low Package Inductance
Optimized for High Frequency Switching
Ideal for CPU Core DC-DC Converters
Optimized for for Control FET socket of Sync. Buck Converter
Low Conduction and Switching Losses
Compatible with existing Surface Mount Techniques
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET MOSFETs
Repetitive rating; pulse width limited by max. junction temperature.
Starting T
J
= 25C, L = 0.27mH, R
G
= 25
, I
AS
= 14A.
Surface mounted on 1 in. square Cu board, steady state.
T
C
measured with thermocouple mounted to top (Drain) of part.
Notes:
DirectFETTM ISOMETRIC
ST
SQ
SX
ST
MQ
MX
MT
0
10
20
30
QG Total Gate Charge (nC)
0.0
1.0
2.0
3.0
4.0
5.0
6.0
V
G
S
,

G
a
t
e
-
t
o
-
S
o
u
r
c
e

V
o
l
t
a
g
e

(
V
)
VDS= 16V
VDS= 10V
ID= 14A
V
DSS
V
GS
R
DS(on)
R
DS(on)
20V max 20V max 3.2m
@ 10V 4.6m@ 4.5V
Absolute Maximum Ratings
Parameter
Units
V
DS
Drain-to-Source Voltage
V
V
GS
Gate-to-Source Voltage
I
D
@ T
A
= 25C
Continuous Drain Current, V
GS
@ 10V
I
D
@ T
A
= 70C
Continuous Drain Current, V
GS
@ 10V
A
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
I
DM
Pulsed Drain Current
E
AS
Single Pulse Avalanche Energy
mJ
I
AR
Avalanche Current
A
14
Max.
15
81
140
20
20
18
28
Q
g tot
Q
gd
Q
gs2
Q
rr
Q
oss
V
gs(th)
18nC
6.1nC
1.9nC
7.3nC
10nC
1.8V
0
1
2
3
4
5
6
7
8
9
10
VGS, Gate -to -Source Voltage (V)
0
5
10
15
20
T
y
p
i
c
a
l

R
D
S
(
o
n
)
(
m
)
ID = 18A
TJ = 25C
TJ = 125C
PD - 96977B
IRF6636
2
www.irf.com
Repetitive rating; pulse width limited by max. junction temperature.
Pulse width
400s; duty cycle 2%.
Notes:
Static @ T
J
= 25C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
BV
DSS
Drain-to-Source Breakdown Voltage
20
V
V
DSS
/
T
J
Breakdown Voltage Temp. Coefficient
15
mV/C
R
DS(on)
Static Drain-to-Source On-Resistance
3.2
4.5
m
4.6
6.4
V
GS(th)
Gate Threshold Voltage
1.55
2.45
V
V
GS(th)
/
T
J
Gate Threshold Voltage Coefficient
-6.4
mV/C
I
DSS
Drain-to-Source Leakage Current
1.0
A
150
I
GSS
Gate-to-Source Forward Leakage
100
nA
Gate-to-Source Reverse Leakage
-100
gfs
Forward Transconductance
52
S
Q
g
Total Gate Charge
18
27
Q
gs1
Pre-Vth Gate-to-Source Charge
5.9
Q
gs2
Post-Vth Gate-to-Source Charge
1.9
nC
Q
gd
Gate-to-Drain Charge
6.1
Q
godr
Gate Charge Overdrive
4.1
See Fig. 17
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)
8.0
Q
oss
Output Charge
10
nC
R
G
Gate Resistance
1.5
t
d(on)
Turn-On Delay Time
14
t
r
Rise Time
19
t
d(off)
Turn-Off Delay Time
16
ns
t
f
Fall Time
6.2
C
iss
Input Capacitance
2420
C
oss
Output Capacitance
780
pF
C
rss
Reverse Transfer Capacitance
360
Diode Characteristics
Parameter
Min. Typ. Max. Units
I
S
Continuous Source Current
2.8
(Body Diode)
A
I
SM
Pulsed Source Current
140
(Body Diode)
V
SD
Diode Forward Voltage
1.0
V
t
rr
Reverse Recovery Time
16
24
ns
Q
rr
Reverse Recovery Charge
7.3
11
nC
MOSFET symbol
Clamped Inductive Load
V
DS
= 10V, I
D
= 14A
Conditions
= 1.0MHz
V
DS
= 10V, V
GS
= 0V
V
DD
= 16V, V
GS
= 4.5V
V
DS
= 10V
V
GS
= 4.5V, I
D
= 14A
V
DS
= V
GS
, I
D
= 250A
V
DS
= 16V, V
GS
= 0V
Conditions
V
GS
= 0V, I
D
= 250A
Reference to 25C, I
D
= 1mA
V
GS
= 10V, I
D
= 18A
T
J
= 25C, I
F
= 14A
di/dt = 100A/s
T
J
= 25C, I
S
= 14A, V
GS
= 0V
showing the
integral reverse
p-n junction diode.
I
D
= 14A
V
GS
= 0V
V
DS
= 10V
I
D
= 14A
V
DS
= 16V, V
GS
= 0V, T
J
= 125C
V
GS
= 20V
V
GS
= -20V
V
GS
= 4.5V
IRF6636
www.irf.com
3
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Surface mounted on 1 in. square Cu board, steady state.
Used double sided cooling , mounting pad.
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Notes:
T
C
measured with thermocouple incontact with top (Drain) of part.
R
is measured at
T
J
of approximately 90C.
Surface mounted on 1 in. square Cu
board (still air).
Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
Mounted to a PCB with a
thin gap filler and heat sink.
(still air)
Absolute Maximum Ratings
Parameter
Units
P
D
@T
A
= 25C
Power Dissipation
W
P
D
@T
A
= 70C
Power Dissipation
P
D
@T
C
= 25C
Power Dissipation
T
P
Peak Soldering Temperature
C
T
J
Operating Junction and
T
STG
Storage Temperature Range
Thermal Resistance
Parameter
Typ.
Max.
Units
R
JA
Junction-to-Ambient
58
R
JA
Junction-to-Ambient
12.5
R
JA
Junction-to-Ambient
20
C/W
R
JC
Junction-to-Case
3.0
R
J-PCB
Junction-to-PCB Mounted
1.0
Linear Derating Factor
W/C
0.017
270
-40 to + 150
Max.
42
2.2
1.4
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
100
T
h
e
r
m
a
l

R
e
s
p
o
n
s
e

(
Z

t
h
J
A
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
J
J
1
1
2
2
3
3
R
1
R
1
R
2
R
2
R
3
R
3
Ci=
i/Ri
Ci=
i/Ri
4
4
R
4
R
4
C
C
5
5
R
5
R
5
Ri (C/W)
i (sec)
0.6677 0.000066
1.0463 0.000896
1.5612 0.004386
29.2822 0.686180
25.4550 32
IRF6636
4
www.irf.com
Fig 5. Typical Output Characteristics
Fig 4. Typical Output Characteristics
Fig 6. Typical Transfer Characteristics
Fig 7. Normalized On-Resistance vs. Temperature
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
Fig 9. Typical On-Resistance vs.
Drain Current and Gate Voltage
0.1
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
VGS
TOP 10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
BOTTOM
2.5V
60s PULSE WIDTH
Tj = 25C
2.5V
0.1
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
2.5V
60s PULSE WIDTH
Tj = 150C
VGS
TOP 10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
BOTTOM
2.5V
-60 -40 -20 0 20 40 60 80 100 120 140 160
TJ , Junction Temperature (C)
0.5
1.0
1.5
T
y
p
i
c
a
l

R
D
S
(
o
n
)
(
N
o
r
m
a
l
i
z
e
d
)
ID = 18A
VGS = 10V
VGS = 4.5V
1
10
100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C
,

C
a
p
a
c
i
t
a
n
c
e
(
p
F
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0
20
40
60
80
100
120
140
ID, Drain Current (A)
0
10
20
30
40
50
T
y
p
i
c
a
l

R
D
S
(
o
n
)

(
m
)
TJ = 25C
Vgs = 3.0V
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
1
2
3
4
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
)
TJ = 150C
TJ = 25C
TJ = -40C
VDS = 10V
60s PULSE WIDTH
IRF6636
www.irf.com
5
Fig 13. Threshold Voltage vs. Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 10. Typical Source-Drain Diode Forward Voltage
Fig11. Maximum Safe Operating Area
Fig 14. Maximum Avalanche Energy vs. Drain Current
-75 -50 -25
0
25
50
75 100 125 150
TJ , Temperature ( C )
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
V
G
S
(
t
h
)
G
a
t
e

t
h
r
e
s
h
o
l
d

V
o
l
t
a
g
e

(
V
)
ID = 50A
25
50
75
100
125
150
Starting TJ , Junction Temperature (C)
0
20
40
60
80
100
120
E
A
S
,
S
i
n
g
l
e

P
u
l
s
e

A
v
a
l
a
n
c
h
e

E
n
e
r
g
y

(
m
J
)
ID
TOP
6.4A
9.8A
BOTTOM 14A
25
50
75
100
125
150
TC , Case Temperature (C)
0
10
20
30
40
50
60
70
80
90
I D
,
D
r
a
i
n

C
u
r
r
e
n
t

(
A
)
0.01
0.10
1.00
10.00
100.00
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
I D
,


D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
OPERATION IN THIS AREA
LIMITED BY RDS(on)
TA = 25C
TJ = 150C
Single Pulse
100sec
1msec
10msec
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
VSD, Source-to-Drain Voltage (V)
0
1
10
100
1000
I S
D
,

R
e
v
e
r
s
e

D
r
a
i
n

C
u
r
r
e
n
t

(
A
)
TJ = 150C
TJ = 25C
TJ = -40C
VGS = 0V