ChipFind - документация

Электронный компонент: IRFBA90N20D

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
Notes
through
are on page 8
www.irf.com
1
09/06/01
IRFBA90N20D
SMPS MOSFET
HEXFET
Power MOSFET
V
DSS
R
DS(on)
max
I
D
200V
0.023
98A
PD - 94300
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
98
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
71
A
I
DM
Pulsed Drain Current
390
P
D
@T
C
= 25C
Power Dissipation
650
W
Linear Derating Factor
4.3
W/C
V
GS
Gate-to-Source Voltage
30
V
dv/dt
Peak Diode Recovery dv/dt
6.3
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Recommended Clip Force
20
N
Absolute Maximum Ratings
l
High frequency DC-DC converters
Benefits
Applications
l
Low Gate-to-Drain Charge to Reduce
Switching Losses
l
Fully Characterized Capacitance Including
Effective C
OSS
to Simplify Design, (See
App. Note AN1001)
l
Fully Characterized Avalanche Voltage
and Current
Super-220TM
Thermal Resistance
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
0.23
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
C/W
R
JA
Junction-to-Ambient
58
background image
IRFBA90N20D
2
www.irf.com
Parameter
Min. Typ. Max. Units
Conditions
g
fs
Forward Transconductance
41
S
V
DS
= 50V, I
D
= 59A
Q
g
Total Gate Charge
160
240 I
D
= 59A
Q
gs
Gate-to-Source Charge
45
67
nC
V
DS
= 160V
Q
gd
Gate-to-Drain ("Miller") Charge
75
110
V
GS
= 10V
t
d(on)
Turn-On Delay Time
23
V
DD
= 100V
t
r
Rise Time
160
I
D
= 59A
t
d(off)
Turn-Off Delay Time
39
R
G
= 1.2
t
f
Fall Time
77
V
GS
= 10V
C
iss
Input Capacitance
6080
V
GS
= 0V
C
oss
Output Capacitance
1040
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
150
pF
= 1.0MHz
C
oss
Output Capacitance
7500
V
GS
= 0V, V
DS
= 1.0V, = 1.0MHz
C
oss
Output Capacitance
410
V
GS
= 0V, V
DS
= 160V, = 1.0MHz
C
oss
eff.
Effective Output Capacitance
790
V
GS
= 0V, V
DS
= 0V to 160V
Dynamic @ T
J
= 25C (unless otherwise specified)
ns
Parameter
Typ.
Max.
Units
E
AS
Single Pulse Avalanche Energy
960
mJ
I
AR
Avalanche Current
59
A
E
AR
Repetitive Avalanche Energy
65
mJ
Avalanche Characteristics
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.5
V
T
J
= 25C, I
S
= 59A, V
GS
= 0V
t
rr
Reverse Recovery Time
220
340
nS
T
J
= 25C, I
F
= 59A
Q
rr
Reverse RecoveryCharge
1.9
2.8
C
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Diode Characteristics
98
390
A
Static @ T
J
= 25C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
200
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.22 V/C Reference to 25C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
0.023
V
GS
= 10V, I
D
= 59A
V
GS(th)
Gate Threshold Voltage
3.0
5.0
V
V
DS
= V
GS
, I
D
= 250A
25
A
V
DS
= 200V, V
GS
= 0V
250
V
DS
= 160V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 30V
Gate-to-Source Reverse Leakage
-100
nA
V
GS
= -30V
I
GSS
I
DSS
Drain-to-Source Leakage Current
background image
IRFBA90N20D
www.irf.com
3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
I D
, Drain-to-Source Current (A)
5.0V
20s PULSE WIDTH
Tj = 25C
VGS
TOP 15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
, Drain-to-Source Current (A)
5.0V
20s PULSE WIDTH
Tj = 175C
VGS
TOP 15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
5.0
7.0
9.0
11.0
13.0
15.0
VGS, Gate-to-Source Voltage (V)
0.10
1.00
10.00
100.00
1000.00
I D
, Drain-to-Source Current
(
)
TJ = 25C
TJ = 175C
VDS = 15V
20s PULSE WIDTH
25
50
75
100
125
150
175
0
20
40
60
80
100
T , Case Temperature
( C)
I , Drain Current (A)
C
D
LIMITED BY PACKAGE
background image
IRFBA90N20D
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0
40
80
120
160
200
0
2
5
7
10
12
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
I
=
D
59A
V
= 40V
DS
V
= 100V
DS
V
= 160V
DS
0.0
0.5
1.0
1.5
2.0
2.5
3.0
VSD, Source-toDrain Voltage (V)
0.10
1.00
10.00
100.00
1000.00
I SD
, Reverse Drain Current (A)
TJ = 25C
TJ = 175C
VGS = 0V
1
10
100
1000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
10000
I D
, Drain-to-Source Current (A)
Tc = 25C
Tj = 175C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100sec
background image
IRFBA90N20D
www.irf.com
5
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
0.001
0.01
0.1
1
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D =
t / t
2. Peak T
= P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
25
50
75
100
125
150
175
0
20
40
60
80
100
T , Case Temperature
( C)
I , Drain Current (A)
C
D
LIMITED BY PACKAGE
background image
IRFBA90N20D
6
www.irf.com
Q
G
Q
GS
Q
GD
V
G
Charge
D.U.T.
VDS
ID
IG
3mA
VGS
.3
F
50K
.2
F
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(B R )D SS
I
A S
R G
I
A S
0 .0 1
tp
D .U .T
L
V D S
+
-
VD D
D R IV E R
A
1 5 V
2 0 V
25
50
75
100
125
150
175
0
400
800
1200
1600
2000
Starting T , Junction Temperature
( C)
E , Single Pulse Avalanche Energy (mJ)
J
AS
I D
TOP
BOTTOM
24A
42A
59A
background image
IRFBA90N20D
www.irf.com
7
P.W.
Period
di/dt
Diode Recovery
dv/dt
Ripple
5%
Body Diode
Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D =
P.W.
Period
+
-
+
+
+
-
-
-
Fig 14. For N-Channel HEXFET
Power MOSFETs
*
V
GS
= 5V for Logic Level Devices
Peak Diode Recovery dv/dt Test Circuit
R
G
V
DD
dv/dt controlled by R
G
Driver same type as D.U.T.
I
SD
controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
*
background image
IRFBA90N20D
8
www.irf.com
Repetitive rating; pulse width limited by
max. junction temperature.
I
SD
59A, di/dt
170A/s, V
DD
V
(BR)DSS
,
T
J
175C
Notes:
Starting T
J
= 25C, L = 0.55mH
R
G
= 25
, I
AS
= 59A.
Pulse width
300s; duty cycle
2%.
C
oss
eff. is a fixed capacitance that gives the same charging time
as C
oss
while V
DS
is rising from 0 to 80% V
DSS
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 95A.
Super-220TM Package Outline
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/01