ChipFind - документация

Электронный компонент: IRFI9Z24N

Скачать:  PDF   ZIP
TO-220 FULLPAK
IRFI9Z24N
HEXFET
Power MOSFET
PD - 9.1529A
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ -10V
- 9.5
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ -10V
- 6.7
A
I
DM
Pulsed Drain Current
- 48
P
D
@T
C
= 25C
Power Dissipation
29
W
Linear Derating Factor
0.19
W/C
V
GS
Gate-to-Source Voltage
20
V
E
AS
Single Pulse Avalanche Energy
96
mJ
I
AR
Avalanche Current
-7.2
A
E
AR
Repetitive Avalanche Energy
2.9
mJ
dv/dt
Peak Diode Recovery dv/dt
- 5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Mounting torque, 6-32 or M3 screw
10 lbfin (1.1Nm)
Absolute Maximum Ratings
Thermal Resistance
V
DSS
= -55V
R
DS(on)
= 0.175
I
D
= -9.5A
8/25/97
S
D
G
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
5.2
R
JA
Junction-to-Ambient
65
C/W
l
Advanced Process Technology
l
Isolated Package
l
High Voltage Isolation = 2.5KVRMS
l
Sink to Lead Creepage Dist. = 4.8mm
l
P-Channel
l
Fully Avalanche Rated
Description
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This
benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power
MOSFETs are well known for, provides the designer
with an extremely efficient and reliable device for use
in a wide variety of applications.
The TO-220 Fullpak eliminates the need for additional
insulating hardware in commercial-industrial
applications. The moulding compound used provides
a high isolation capability and a low thermal resistance
between the tab and external heatsink. This isolation
is equivalent to using a 100 micron mica barrier with
standard TO-220 product. The Fullpak is mounted to
a heatsink using a single clip or by a single screw
fixing.
IRFI9Z24N
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
-1.3
V
T
J
= 25C, I
S
= - 5.4A, V
GS
= 0V
t
rr
Reverse Recovery Time
47
71
ns
T
J
= 25C, I
F
= - 7.2A
Q
rr
Reverse RecoveryCharge
84
130
C
di/dt = -100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
-55
V
V
GS
= 0V, I
D
= - 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
-0.05
V/C
Reference to 25C, I
D
= -1mA
R
DS(on)
Static Drain-to-Source On-Resistance
0.175
V
GS
= -10V, I
D
= - 5.4A
V
GS(th)
Gate Threshold Voltage
-2.0
-4.0
V
V
DS
= V
GS
, I
D
= - 250A
g
fs
Forward Transconductance
2.5
S
V
DS
= - 25V, I
D
= -7.2A
-25
A
V
DS
= - 55V, V
GS
= 0V
-250
V
DS
= - 44V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 20V
Gate-to-Source Reverse Leakage
-100
nA
V
GS
= - 20V
Q
g
Total Gate Charge
19
I
D
= -7.2A
Q
gs
Gate-to-Source Charge
5.1
nC
V
DS
= - 44V
Q
gd
Gate-to-Drain ("Miller") Charge
10
V
GS
= -10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
13
V
DD
= -28V
t
r
Rise Time
55
I
D
= - 7.2A
t
d(off)
Turn-Off Delay Time
23
R
G
= 24
t
f
Fall Time
37
R
D
= 3.7
,
See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
350
V
GS
= 0V
C
oss
Output Capacitance
170
pF
V
DS
= - 25V
C
rss
Reverse Transfer Capacitance
92
= 1.0MHz, See Fig. 5
nH
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
L
D
Internal Drain Inductance
L
S
Internal Source Inductance
I
GSS
ns
4.5
7.5
I
DSS
Drain-to-Source Leakage Current
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
I
SD
-7.2A, di/dt
-280A/s, V
DD
V
(BR)DSS
,
T
J
175C
Notes:
Starting T
J
= 25C, L = 3.7mH
R
G
= 25
, I
AS
= -7.2A. (See Figure 12)
Pulse width
300s; duty cycle
2%.
S
D
G
Source-Drain Ratings and Characteristics
A
S
D
G
-9.5
-48
Uses IRF9Z24N data and test conditions
t=60s, =60Hz
IRFI9Z24N
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
1 0
1 0 0
0 . 1
1
1 0
1 0 0
D
D S
2 0 s PU LS E W ID TH
T = 2 5C
A
-
I
,
D
r
ai
n-
t
o
-
S
our
c
e
C
u
r
r
ent
(
A
)
-V , Drain -to -So urce Vo ltag e (V)
VGS
TOP - 15V
- 10V
- 8.0V
- 7.0V
- 6.0V
- 5.5V
- 5.0V
BOTT OM - 4. 5V
-4.5 V
c
1
10
100
0.1
1
10
100
D
D S
A
-
I
,
D
r
ai
n-
t
o
-
S
o
u
r
c
e
C
u
r
r
en
t

(
A
)
-V , Dra in -to-So urce V oltag e (V )
VGS
TOP - 15V
- 10V
- 8.0V
- 7.0V
- 6.0V
- 5.5V
- 5.0V
BOTT OM - 4. 5V
-4.5 V
20 s PU LSE W ID TH
T = 1 75C
C
1
1 0
1 0 0
4
5
6
7
8
9
1 0
T = 2 5 C
J
G S
D
A
-
I
,

D
r
a
i
n
-
t
o
-S
o
u
rc
e
C
u
rre
n
t
(A
)
-V , Ga te -to -S o u rce V o ltag e (V )
V = -2 5 V
2 0 s P U L S E W ID T H
DS
T = 1 7 5 C
J
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
- 6 0
- 4 0
- 2 0
0
2 0
4 0
6 0
8 0
1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
J
T , Ju nctio n T emp eratu re (C)
R
,
D
r
a
i
n
-
to
-
S
o
u
r
c
e
O
n
R
e
s
i
s
t
a
n
c
e
D
S
(
on)
(
N
o
r
m
a
l
i
z
ed)
A
V = -10 V
G S
I = -12 A
D
T
J
= 25C
T
J
= 175C
IRFI9Z24N
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0
4
8
12
16
20
0
5
10
15
20
25
G
GS
A
-
V
,
G
a
t
e
-
t
o
-
S
our
c
e
V
o
l
t
age (
V
)
Q , Tota l Gate Ch arge (n C)
FO R TEST C IR C U IT
SEE F IGU R E 1 3
I = -7.2 A
V = -4 4V
V = -2 8V
D
DS
DS
0 . 1
1
1 0
1 0 0
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
T = 25 C
T = 1 50C
J
J
V = 0 V
G S
S D
SD
A
-I
,

R
e
v
e
rs
e

D
r
a
i
n
C
u
rre
n
t
(A
)
-V , S ou rce -to -Drain V olta ge (V )
1
10
100
1
10
100
O PER ATIO N IN TH IS AR EA LIM ITED
BY R
D S(o n)
10m s
A
-
I
, D
r
a
i
n

C
u
r
r
e
n
t (
A
)
-V , Dra in-to-So urce V olta ge (V )
D S
D
1 0s
100 s
1m s
T = 2 5C
T = 1 75C
Sin gle Pu ls e
C
J
0
100
200
300
400
500
600
700
1
10
100
C
,
C
a
pac
i
t
anc
e (
p
F
)
D S
V , Drai n-to -So urce V oltag e (V)
A
V = 0V , f = 1MH z
C = C + C , C SH OR TED
C = C
C = C + C
G S
is s gs g d ds
rs s g d
os s ds gd
C
is s
C
o s s
C
rs s
T
J
= 25C
IRFI9Z24N
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
V
DS
-10V
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
V
DD
R
G
D.U.T.
+
-
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
25
50
75
100
125
150
175
0
2
4
6
8
10
T , Case Temperature
( C)
-I , Drain Current (A)
C
D
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D =
t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)