ChipFind - документация

Электронный компонент: IRFP450N

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
www.irf.com
1
1/17/02
IRFP450N
SMPS MOSFET
HEXFET
Power MOSFET
l
Switch Mode Power Supply (SMPS)
l
Uninterruptible Power Supply
l
High Speed Power Switching
Benefits
Applications
l
Low Gate Charge Qg results in Simple
Drive Requirement
l
Improved Gate, Avalanche and Dynamic
dv/dt Ruggedness
l
Fully Characterized Capacitance and
Avalanche Voltage and Current
l
Effective Coss Specified (See AN 1001)
V
DSS
Rds(on) max
I
D
500V
0.37
14A
Typical SMPS Topologies
l
Two transistor Forward
l
Half Bridge and Full Bridge
l
PFC Boost
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
14
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
8.8
A
I
DM
Pulsed Drain Current
56
P
D
@T
C
= 25C
Power Dissipation
200
W
Linear Derating Factor
1.6
W/C
V
GS
Gate-to-Source Voltage
30
V
dv/dt
Peak Diode Recovery dv/dt
5.0
V/ns
T
J
Operating Junction and
-55 to + 150
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Mounting torqe, 6-32 or M3 screw 10 lbfin (1.1Nm)
Absolute Maximum Ratings
PD- 94216
Notes
through
are on page 8
TO-247AC
background image
IRFP450N
2
www.irf.com
Parameter
Min. Typ. Max. Units
Conditions
g
fs
Forward Transconductance
7.9
S
V
DS
= 50V, I
D
= 8.4A
Q
g
Total Gate Charge
77 I
D
= 14A
Q
gs
Gate-to-Source Charge
26
nC
V
DS
= 400V
Q
gd
Gate-to-Drain ("Miller") Charge
34
V
GS
= 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
20
V
DD
= 250V
t
r
Rise Time
63
I
D
= 14A
t
d(off)
Turn-Off Delay Time
29
R
G
= 6.2
t
f
Fall Time
25
V
GS
= 10V,See Fig. 10
C
iss
Input Capacitance
2260
V
GS
= 0V
C
oss
Output Capacitance
210
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
14
pF
= 1.0MHz, See Fig. 5
C
oss
Output Capacitance
2410
V
GS
= 0V, V
DS
= 1.0V, = 1.0MHz
C
oss
Output Capacitance
59
V
GS
= 0V, V
DS
= 400V, = 1.0MHz
C
oss
eff.
Effective Output Capacitance
110
V
GS
= 0V, V
DS
= 0V to 400V
Dynamic @ T
J
= 25C (unless otherwise specified)
ns
Parameter
Typ.
Max.
Units
E
AS
Single Pulse Avalanche Energy
170
mJ
I
AR
Avalanche Current
14
A
E
AR
Repetitive Avalanche Energy
20
mJ
Avalanche Characteristics
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.4
V
T
J
= 25C, I
S
= 14A, V
GS
= 0V
t
rr
Reverse Recovery Time
430
650
ns
T
J
= 25C, I
F
= 14A
Q
rr
Reverse RecoveryCharge
3.7
5.6
C
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Diode Characteristics
14
56
A
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
0.64
R
CS
Case-to-Sink, Flat, Greased Surface
0.24
C/W
R
JA
Junction-to-Ambient
40
Thermal Resistance
Static @ T
J
= 25C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
500
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.59 V/C Reference to 25C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
0.37
V
GS
= 10V, I
D
= 8.4A
V
GS(th)
Gate Threshold Voltage
3.0
5.0
V
V
DS
= V
GS
, I
D
= 250A
25
A
V
DS
= 500V, V
GS
= 0V
250
V
DS
= 400V, V
GS
= 0V, T
J
= 125C
Gate-to-Source Forward Leakage
100
V
GS
= 30V
Gate-to-Source Reverse Leakage
-100
nA
V
GS
= -30V
I
GSS
I
DSS
Drain-to-Source Leakage Current
background image
IRFP450N
www.irf.com
3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
-60 -40 -20
0
20
40
60
80 100 120 140 160
0.0
0.5
1.0
1.5
2.0
2.5
3.0
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
D
S
(
on)
V
=
I =
GS
D
10V
14A
1
10
100
1
10
100
20s PULSE WIDTH
T = 150 C
J
TOP
BOTTOM
VGS
15V
12V
10V
8.0V
7.5V
7.0V
6.5V
6.0V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
6.0V
0.1
1
10
100
6.0
7.0
8.0
9.0
10.0
V = 50V
20s PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J
T = 150 C
J
0.1
1
10
100
0.1
1
10
100
20s PULSE WIDTH
T = 25 C
J
TOP
BOTTOM
VGS
15V
12V
10V
8.0V
7.5V
7.0V
6.5V
6.0V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
6.0V
background image
IRFP450N
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0
20
40
60
80
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Vol
t
age (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
14A
V
= 100V
DS
V
= 250V
DS
V
= 400V
DS
0.1
1
10
100
0.2
0.4
0.6
0.8
1.0
1.2
1.4
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J
T = 150 C
J
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
10000
100000
C
,

C
a
p
a
c
i
t
a
n
c
e
(
p
F
)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
1
10
100
1000
10000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
I D
,


D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
Tc = 25C
Tj = 150C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100sec
background image
IRFP450N
www.irf.com
5
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
0.01
0.1
1
0.00001
0.0001
0.001
0.01
0.1
Notes:
1. Duty factor D =
t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Ther
m
a
l
R
e
sponse
(Z
)
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
25
50
75
100
125
150
0
2
4
6
8
10
12
14
T , Case Temperature
( C)
I , Drain Current (A)
C
D