ChipFind - документация

Электронный компонент: IRFR3711Z

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
www.irf.com
1
3/2/04
IRFR3711Z
IRFU3711Z
HEXFET
Power MOSFET
Notes
through
are on page 11
Applications
Benefits
l
Very Low RDS(on) at 4.5V V
GS
l
Ultra-Low Gate Impedance
l
Fully Characterized Avalanche Voltage
and Current
l
High Frequency Synchronous Buck
Converters for Computer Processor Power
l
High Frequency Isolated DC-DC
Converters with Synchronous Rectification
for Telecom and Industrial Use
D-Pak
IRFR3711Z
I-Pak
IRFU3711Z
PD - 94651B
Absolute Maximum Ratings
Parameter
Units
V
DS
Drain-to-Source Voltage
V
V
GS
Gate-to-Source Voltage
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
A
I
DM
Pulsed Drain Current
P
D
@T
C
= 25C
Maximum Power Dissipation
g
W
P
D
@T
C
= 100C
Maximum Power Dissipation
g
Linear Derating Factor
W/C
T
J
Operating Junction and
C
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
Thermal Resistance
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
1.9
R
JA
Junction-to-Ambient (PCB Mount)
g
50
C/W
R
JA
Junction-to-Ambient
110
79
Max.
93
f
66
f
370
20
20
0.53
39
300 (1.6mm from case)
-55 to + 175
V
DSS
R
DS(on)
max
Qg
20V
5.7m
:
18nC
background image
IRFR/U3711Z
2
www.irf.com
Static @ T
J
= 25C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
BV
DSS
Drain-to-Source Breakdown Voltage
20
V
V
DSS
/
T
J
Breakdown Voltage Temp. Coefficient
13
mV/C
R
DS(on)
Static Drain-to-Source On-Resistance
4.5
5.7
m
6.2
7.8
V
GS(th)
Gate Threshold Voltage
1.55
2.0
2.45
V
V
GS(th)
/
T
J
Gate Threshold Voltage Coefficient
-5.4
mV/C
I
DSS
Drain-to-Source Leakage Current
1.0
A
150
I
GSS
Gate-to-Source Forward Leakage
100
nA
Gate-to-Source Reverse Leakage
-100
gfs
Forward Transconductance
48
S
Q
g
Total Gate Charge
18
27
Q
gs1
Pre-Vth Gate-to-Source Charge
5.1
Q
gs2
Post-Vth Gate-to-Source Charge
1.8
nC
Q
gd
Gate-to-Drain Charge
6.5
Q
godr
Gate Charge Overdrive
4.6
See Fig. 16
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)
8.3
Q
oss
Output Charge
9.8
nC
t
d(on)
Turn-On Delay Time
12
t
r
Rise Time
13
t
d(off)
Turn-Off Delay Time
15
ns
t
f
Fall Time
5.2
C
iss
Input Capacitance
2160
C
oss
Output Capacitance
700
pF
C
rss
Reverse Transfer Capacitance
360
Avalanche Characteristics
Parameter
Units
E
AS
Single Pulse Avalanche Energy
d
mJ
I
AR
Avalanche Current
A
E
AR
Repetitive Avalanche Energy
mJ
Diode Characteristics
Parameter
Min. Typ. Max. Units
I
S
Continuous Source Current
93
f
(Body Diode)
A
I
SM
Pulsed Source Current
370
(Body Diode)
V
SD
Diode Forward Voltage
1.0
V
t
rr
Reverse Recovery Time
19
28
ns
Q
rr
Reverse Recovery Charge
9.4
14
nC
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
MOSFET symbol
V
GS
= 4.5V
Typ.
I
D
= 12A
V
GS
= 0V
V
DS
= 10V
Clamped Inductive Load
T
J
= 25C, I
F
= 12A, V
DD
= 10V
di/dt = 100A/s
e
T
J
= 25C, I
S
= 12A, V
GS
= 0V
e
showing the
integral reverse
p-n junction diode.
V
DS
= 10V, I
D
= 12A
V
DS
= 10V, V
GS
= 0V
V
DD
= 15V, V
GS
= 4.5V
e
I
D
= 12A
V
DS
= 10V
Conditions
V
GS
= 0V, I
D
= 250A
Reference to 25C, I
D
= 1mA
V
GS
= 10V, I
D
= 15A
e
V
GS
= 4.5V, I
D
= 12A
e
V
GS
= 20V
V
GS
= -20V
V
DS
= V
GS
, I
D
= 250A
V
DS
= 16V, V
GS
= 0V
V
DS
= 16V, V
GS
= 0V, T
J
= 125C
Conditions
7.9
Max.
140
12
= 1.0MHz
background image
IRFR/U3711Z
www.irf.com
3
Fig 4. Normalized On-Resistance
vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.1
1
10
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
2.5V
20s PULSE WIDTH
Tj = 25C
VGS
TOP 10V
4.5V
3.7V
3.5V
3.3V
3.0V
2.7V
BOTTOM 2.5V
0.1
1
10
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
2.5V
20s PULSE WIDTH
Tj = 175C
VGS
TOP 10V
4.5V
3.7V
3.5V
3.3V
3.0V
2.7V
BOTTOM 2.5V
2.0
3.0
4.0
5.0
6.0
7.0
8.0
VGS, Gate-to-Source Voltage (V)
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t
(
)
TJ = 25C
TJ = 175C
VDS = 10V
20s PULSE WIDTH
-60 -40 -20
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (C)
0.5
1.0
1.5
2.0
R
D
S
(
o
n
)
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

O
n

R
e
s
i
s
t
a
n
c
e






















(
N
o
r
m
a
l
i
z
e
d
)
ID = 30A
VGS = 10V
background image
IRFR/U3711Z
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
1
10
100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
C
,

C
a
p
a
c
i
t
a
n
c
e

(
p
F
)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0
10
20
30
40
QG Total Gate Charge (nC)
0
2
4
6
8
10
12
V
G
S
,

G
a
t
e
-
t
o
-
S
o
u
r
c
e

V
o
l
t
a
g
e

(
V
)
VDS= 18V
VDS= 10V
ID= 12A
0.0
0.5
1.0
1.5
2.0
2.5
VSD, Source-toDrain Voltage (V)
0.1
1.0
10.0
100.0
1000.0
I S
D
,

R
e
v
e
r
s
e

D
r
a
i
n

C
u
r
r
e
n
t

(
A
)
TJ = 25C
TJ = 175C
VGS = 0V
0.1
1.0
10.0
100.0
1000.0
VDS , Drain-toSource Voltage (V)
1
10
100
1000
I D
,


D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
Tc = 25C
Tj = 175C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100sec
background image
IRFR/U3711Z
www.irf.com
5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Threshold Voltage vs. Temperature
25
50
75
100
125
150
175
TC , Case Temperature (C)
0
20
40
60
80
100
I D
,

D
r
a
i
n

C
u
r
r
e
n
t

(
A
)
LIMITED BY PACKAGE
-75
-50
-25
0
25
50
75
100 125 150 175
TJ , Temperature ( C )
0.0
0.5
1.0
1.5
2.0
2.5
V
G
S
(
t
h
)
G
a
t
e

t
h
r
e
s
h
o
l
d

V
o
l
t
a
g
e

(
V
)
ID = 250A
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
T
h
e
r
m
a
l

R
e
s
p
o
n
s
e

(

Z

t
h
J
C
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (C/W)
i (sec)
0.805 0.000237
0.606 0.001005
0.492 0.101628
J
J
1
1
2
2
3
3
R
1
R
1
R
2
R
2
R
3
R
3
C
Ci
i
/
Ri
Ci=
i
/
Ri