ChipFind - документация

Электронный компонент: IRL2910

Скачать:  PDF   ZIP
IRL2910
HEXFET
Power MOSFET
PD - 91375B
S
D
G
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
0.75
C/W
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
C/W
R
JA
Junction-to-Ambient
62
C/W
Thermal Resistance
V
DSS
= 100V
R
DS(on)
= 0.026
I
D
= 55A
l
Logic-Level Gate Drive
l
Advanced Process Technology
l
Ultra Low On-Resistance
l
Dynamic dv/dt Rating
l
175C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This
benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power MOSFETs
are well known for, provides the designer with an extremely
efficient and reliable device for use in a wide variety of
applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220 contribute
to its wide acceptance throughout the industry.
Description
TO-220AB
5/13/98
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
55
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
39
A
I
DM
Pulsed Drain Current
190
P
D
@T
C
= 25C
Power Dissipation
200
W
Linear Derating Factor
1.3
W/C
V
GS
Gate-to-Source Voltage
16
V
E
AS
Single Pulse Avalanche Energy
520
mJ
I
AR
Avalanche Current
29
A
E
AR
Repetitive Avalanche Energy
20
mJ
dv/dt
Peak Diode Recovery dv/dt
5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Mounting torque, 6-32 or M3 srew
10 lbfin (1.1Nm)
Absolute Maximum Ratings
IRL2910
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
100
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.12
V/C
Reference to 25C, I
D
= 1mA
0.026
V
GS
= 10V, I
D
= 29A
0.030
V
GS
= 5.0V, I
D
= 29A
0.040
V
GS
= 4.0V, I
D
= 24A
V
GS(th)
Gate Threshold Voltage
1.0
2.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
28
S
V
DS
= 50V, I
D
= 29A
25
V
DS
= 100V, V
GS
= 0V
250
V
DS
= 80V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
nA
V
GS
= 16V
Gate-to-Source Reverse Leakage
-100
V
GS
= -16V
Q
g
Total Gate Charge
140
I
D
= 29A
Q
gs
Gate-to-Source Charge
20
nC
V
DS
= 80V
Q
gd
Gate-to-Drain ("Miller") Charge
81
V
GS
= 5.0V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
11
V
DD
= 50V
t
r
Rise Time
100
I
D
= 29A
t
d(off)
Turn-Off Delay Time
49
R
G
= 1.4
,
V
GS
= 5.0V
t
f
Fall Time
55
R
D
= 1.7
,
See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
3700
V
GS
= 0V
C
oss
Output Capacitance
630
pF
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
330
= 1.0MHz, See Fig. 5
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
I
GSS
I
DSS
Drain-to-Source Leakage Current
L
D
Internal Drain Inductance
4.5
L
S
Internal Source Inductance
7.5
R
DS(on)
Static Drain-to-Source On-Resistance
A
ns
nH
S
D
G
Source-Drain Ratings and Characteristics
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
I
SD
29A, di/dt
490A/s, V
DD
V
(BR)DSS
,
T
J
175C
Notes:
V
DD
= 25V, starting T
J
= 25C, L = 1.2mH
R
G
= 25
, I
AS
= 29A. (See Figure 12)
Pulse width
300s; duty cycle
2%.
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 29A, V
GS
= 0V
t
rr
Reverse Recovery Time
240
350
ns
T
J
= 25C, I
F
= 29A
Q
rr
Reverse RecoveryCharge
1.8
2.7
C
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
S
D
G
55
190
A
IRL2910
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
1
1 0
1 0 0
1 0 0 0
0.1
1
1 0
1 0 0
I
,
Dr
ai
n
-
t
o
-
S
ou
r
c
e Cur
r
e
n
t
(
A
)
D
V , D ra in-to-S ource V oltage (V )
D S
A
2 0 s P U LS E W ID T H
T = 2 5C
J
VGS
TOP 15V
12V
10V
8.0V
6.0V
4.0V
3.0V
BOTTOM 2.5V
2.5 V
1
1 0
1 0 0
1 0 0 0
0.1
1
1 0
1 0 0
I
,
Dr
ai
n
-
t
o
-
S
ou
r
c
e Cur
r
e
n
t
(
A
)
D
V , D rain-to-S ource V oltage (V )
D S
A
2 0 s P U LS E W ID T H
T = 1 75 C
VGS
TOP 15V
12V
10V
8.0V
6.0V
4.0V
3.0V
BOTTOM 2.5V
2.5 V
J
1
1 0
1 0 0
1 0 0 0
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5
5 . 0
5 . 5
6 . 0
T = 2 5 C
J
G S
V , G a te -to -S o u rc e V o lta g e (V )
D
I
,
D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t

(
A
)
T = 1 7 5 C
J
A
V = 5 0 V
2 0 s P U L S E W ID T H
D S
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
- 6 0
- 4 0
- 2 0
0
2 0
4 0
6 0
8 0
1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
J
T , Junction T em perature (C )
R
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
O
n
R
e
s
i
s
ta
n
c
e
D
S
(
on)
(N
o
r
m
a
l
i
z
e
d
)
V = 10 V
G S
A
I = 4 8A
D
IRL2910
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
1
1 0
1 0 0
C
,
Cap
ac
i
t
a
n
c
e
(
p
F
)
D S
V , D rain-to-S ourc e V oltage (V )
A
V = 0V , f = 1 M H z
C = C + C , C S H O R TE D
C = C
C = C + C
G S
iss g s g d d s
rs s g d
o ss ds g d
C
is s
C
o s s
C
rs s
0
3
6
9
1 2
1 5
0
4 0
8 0
1 2 0
1 6 0
2 0 0
Q , T otal G ate C harge (nC )
G
V
, G
a
te
-
t
o
-
S
o
u
r
c
e
V
o
l
t
a
g
e
(
V
)
GS
V = 8 0V
V = 5 0V
V = 2 0V
A
F O R T E S T C IR C U IT
S E E F IG U R E 1 3
I = 29 A
D S
D S
D S
D
1 0
1 0 0
1 0 0 0
0 . 4
0 . 8
1 . 2
1 . 6
2 . 0
T = 25 C
J
V = 0V
G S
V , S o urc e-to -D ra in V o lta ge (V )
I , R
e
v
e
r
s
e
D
r
a
i
n
C
u
r
r
e
n
t
(
A
)
S D
SD
A
T = 1 75 C
J
1
1 0
1 0 0
1 0 0 0
1
1 0
1 0 0
1 0 0 0
V , D rain-to-S ource V oltage (V )
D S
I
,
Dr
ai
n
C
u
r
r
e
nt
(
A
)
O P E R A T IO N IN T H IS A R E A L IM ITE D
B Y R
D
D S (o n)
1 0 s
1 0 0 s
1 m s
1 0 m s
A
T = 25 C
T = 17 5C
S ing le P u ls e
C
J
IRL2910
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
5.0V
+
-
V
DD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
25
50
75
100
125
150
175
0
10
20
30
40
50
60
T , Case Temperature
( C)
I , Drain Current (A)
C
D
0.01
0.1
1
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D =
t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)