ChipFind - документация

Электронный компонент: IRLI3705N

Скачать:  PDF   ZIP
IRLI3705N
HEXFET
Power MOSFET
PD - 9.1369B
S
D
G
V
DSS
= 55V
R
DS(on)
= 0.01
I
D
= 52A
l
Logic-Level Gate Drive
l
Advanced Process Technology
l
Isolated Package
l
High Voltage Isolation = 2.5KVRMS
l
Sink to Lead Creepage Dist. = 4.8mm
l
Fully Avalanche Rated
TO-220 FULLPAK
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This
benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power MOSFETs
are well known for, provides the designer with an extremely
efficient and reliable device for use in a wide variety of
applications.
The TO-220 Fullpak eliminates the need for additional
insulating hardware in commercial-industrial applications.
The moulding compound used provides a high isolation
capability and a low thermal resistance between the tab
and external heatsink. This isolation is equivalent to using
a 100 micron mica barrier with standard TO-220 product.
The Fullpak is mounted to a heatsink using a single clip or
by a single screw fixing.
8/25/97
Description
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
2.6
R
JA
Junction-to-Ambient
65
Thermal Resistance
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
52
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
37
A
I
DM
Pulsed Drain Current
310
P
D
@T
C
= 25C
Power Dissipation
58
W
Linear Derating Factor
0.39
W/C
V
GS
Gate-to-Source Voltage
16
V
E
AS
Single Pulse Avalanche Energy
340
mJ
I
AR
Avalanche Current
46
A
E
AR
Repetitive Avalanche Energy
5.8
mJ
dv/dt
Peak Diode Recovery dv/dt
5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Mounting torque, 6-32 or M3 srew
10 lbfin (1.1Nm)
Absolute Maximum Ratings
C/W
IRLI3705N
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
55
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.056
V/C
Reference to 25C, I
D
= 1mA
0.010
V
GS
= 10V, I
D
= 28A
0.012
V
GS
= 5.0V, I
D
= 28A
0.018
V
GS
= 4.0V, I
D
= 24A
V
GS(th)
Gate Threshold Voltage
1.0
2.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
50
S
V
DS
= 25V, I
D
= 46A
25
A
V
DS
= 55V, V
GS
= 0V
250
V
DS
= 44V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
nA
V
GS
= 16V
Gate-to-Source Reverse Leakage
-100
V
GS
= -16V
Q
g
Total Gate Charge
98
I
D
= 46A
Q
gs
Gate-to-Source Charge
19
nC
V
DS
= 44V
Q
gd
Gate-to-Drain ("Miller") Charge
49
V
GS
= 5.0V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
12
V
DD
= 28V
t
r
Rise Time
140
ns
I
D
= 46A
t
d(off)
Turn-Off Delay Time
37
R
G
= 1.8
,
V
GS
= 5.0V
t
f
Fall Time
78
R
D
= 0.59
,
See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
3600
V
GS
= 0V
C
oss
Output Capacitance
870
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
320
= 1.0MHz, See Fig. 5
C
Drain to Sink Capacitance
12
= 1.0MHz
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
I
GSS
I
DSS
Drain-to-Source Leakage Current
L
D
Internal Drain Inductance
4.5
L
S
Internal Source Inductance
7.5
R
DS(on)
Static Drain-to-Source On-Resistance
nH
pF
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 28A, V
GS
= 0V
t
rr
Reverse Recovery Time
94
140
ns
T
J
= 25C, I
F
= 46A
Q
rr
Reverse RecoveryCharge
290
440
nC
di/dt = 100A/s
S
D
G
A
52
310
Source-Drain Ratings and Characteristics
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
V
DD
= 25V, starting T
J
= 25C, L = 320H
R
G
= 25
, I
AS
= 46A. (See Figure 12)
Notes:
Pulse width
300s; duty cycle
2%.
Uses IRL3705N data and test conditions
I
SD
46A, di/dt
250A/s, V
DD
V
(BR)DSS
,
T
J
175C
t=60s, =60Hz
IRLI3705N
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
10
100
1000
0.1
1
10
100
I
,
D
r
ai
n-
t
o
-
S
o
u
r
c
e
C
u
r
r
en
t
(
A
)
D
V , Dra in-to-So urce V olta ge (V )
D S
A
20 s PU LSE W ID TH
T = 2 5C
J
VGS
TOP 15V
12V
10V
8.0V
6.0V
4.0V
3.0V
BOTT OM 2.5V
2 .5V
1
10
100
1000
0.1
1
10
100
I
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
D
V , Dra in-to-So urce V olta ge (V )
D S
A
20 s PU LSE W ID TH
T = 1 75C
VGS
TOP 15V
12V
10V
8.0V
6.0V
4.0V
3.0V
BOTT OM 2.5V
2.5 V
J
1
1 0
1 0 0
1 0 0 0
2 . 0
3 . 0
4 . 0
5 . 0
6 . 0
7 . 0
8 . 0
T = 2 5 C
J
G S
V , G a te -to -S o u rce V oltag e (V )
D
I
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t (
A
)
T = 1 7 5 C
J
A
V = 2 5V
2 0 s PU LS E W ID T H
DS
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
- 6 0
- 4 0
- 2 0
0
2 0
4 0
6 0
8 0
1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
J
T , Ju nctio n T emp eratu re (C)
R
,
D
r
a
i
n
-
to
-
S
o
u
r
c
e
O
n
R
e
s
i
s
t
a
n
c
e
D
S
(
on)
(
N
o
r
m
a
l
i
z
ed)
V = 10 V
G S
A
I = 77 A
D
IRLI3705N
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 8. Maximum Safe Operating Area
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0
1000
2000
3000
4000
5000
6000
1
10
100
C
,
C
a
pac
i
t
anc
e (
p
F
)
D S
V , D rain-to -S ou rce Volta ge (V )
A
V = 0V , f = 1 MH z
C = C + C , C SH O R TED
C = C
C = C + C
G S
iss gs gd ds
rs s g d
os s ds gd
C
is s
C
o s s
C
rs s
0
3
6
9
12
15
0
20
40
60
80
100
120
140
Q , T ota l G ate Ch arge (n C)
G
V

,
G
a
te
-
t
o
-
S
o
u
r
c
e
V
o
l
t
a
g
e

(
V
)
GS
A
FO R TEST C IRC U IT
SEE FIG UR E 13
I = 46 A
V = 44 V
V = 28 V
D
D S
D S
1 0
1 0 0
1 0 0 0
0 . 4
0 . 8
1 . 2
1 . 6
2 . 0
2 . 4
2 . 8
T = 2 5C
J
V = 0 V
G S
V , S o urce-to -Drain Vo lta ge (V )
I
, R
e
v
e
r
s
e
D
r
a
i
n
C
u
r
r
e
n
t
(
A
)
S D
SD
A
T = 1 75C
J
1
10
100
1000
1
10
100
V , Dra in -to-So urce Vo ltag e (V)
D S
I
,
D
r
ai
n C
u
r
r
en
t

(
A
)
OPE R ATIO N IN TH IS A RE A LI MI TE D
BY R
D
D S(o n)
10 s
100 s
1 ms
10m s
A
T = 25 C
T = 17 5C
S ing le Pulse
C
J
IRLI3705N
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
5.0V
+
-
V
DD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
25
50
75
100
125
150
175
0
10
20
30
40
50
60
T , Case Temperature
( C)
I , Drain Current (A)
C
D
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
10
Notes:
1. Duty factor D =
t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)