ChipFind - документация

Электронный компонент: LT5512

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
LT5512
1
5512f
FEATURES
DESCRIPTIO
U
APPLICATIO S
U
TYPICAL APPLICATIO
U
s
Cellular/PCS/UMTS Infrastructure
s
CATV Downlink Infrastructure
s
High Linearity Mixer Applications
s
ISM Band Receivers
s
Broadband RF, LO and IF Operation
s
High Input IP3: +21dBm at 900MHz
+17dBm at 1900MHz
s
Typical Conversion Gain: 1dB at 1900MHz
s
SSB Noise Figure: 11dB at 900MHz
14dB at 1900MHz
s
Integrated LO Buffer: Insensitive to LO Drive Level
s
Single-Ended or Differential LO Signal
s
High LO-RF Isolation
s
Enable Function
s
4.5V to 5.25V Supply Voltage Range
s
4mm
4mm QFN Package
1kHz-3GHz High Signal Level
Down-Converting Mixer
The LT
5512 is a broadband mixer IC optimized for high
linearity downconverter applications including cable and
wireless infrastructure. The IC includes a differential LO
buffer amplifier driving a double-balanced mixer. An inte-
grated RF buffer amplifier improves LO-RF isolation and
eliminates the need for precision external bias resistors.
The LT5512 is a high-linearity alternative to passive diode
mixers. Unlike passive mixers, which have conversion
loss and require high LO drive levels, the LT5512 delivers
conversion gain and requires significantly lower LO drive
levels.
, LTC and LT are registered trademarks of Linear Technology Corporation.
LO
INPUT
10dBm
5512 F01a
LTC1748
ADC
5V
LNA
1850MHz
TO
1910MHz
1850MHz
TO
1910MHz
70MHz
(TYP)
EN
V
CC1
V
CC2
1:2
RF
+
RF
LO
+
LO
IF
+
IF
IF
VGA
LT5512
1.5pF
100pF
100pF
100pF
100pF
1
F
5.6nH
220nH
220nH
8.2pF
Output IF Power and Output IM3 vs
RF Input Power (Two Input Tones)
High Signal-Level Downmixer for Wireless Infastructure
RF INPUT POWER (dBm/TONE)
21
P
OUT
, IM3 (dBm/TONE)
10
0
10
20
30
40
50
60
70
80
15
9
6
6
5512 F01b
18
12
3
0
3
IM3
IF
OUT
T
A
= 25
C
P
LO
= 10dBm
f
LO
= 1830MHz
f
RF1
= 1899.9MHz
f
RF2
= 1900.1MHz
background image
LT5512
2
5512f
Supply Voltage ....................................................... 5.5V
Enable Voltage ............................... 0.3V to V
CC
+ 0.3V
LO
+
to LO
Differential Voltage ............................
1.5V
................................................... (+6dBm equivalent)
RF
+
to RF
Differential Voltage .............................
0.7V
.................................................. (+10dBm equivalent)
Operating Temperature Range .................40
C to 85
C
Storage Temperature Range ..................65
C to 125
C
Junction Temperature (T
J
)................................... 125
C
ORDER PART
NUMBER
LT5512EUF
ABSOLUTE AXI U
RATI GS
W
W
W
U
PACKAGE/ORDER I FOR ATIO
U
U
W
(Note 1)
ELECTRICAL CHARACTERISTICS
Consult LTC Marketing for parts specified with wider operating temperature ranges.
16 15 14 13
5
6
7
8
TOP VIEW
UF PACKAGE
16-LEAD (4mm
4mm) PLASTIC QFN
EXPOSED PAD IS GROUND (PIN 17)
(MUST BE SOLDERED TO PCB)
9
10
11
12
4
3
2
1
NC
RF
+
RF
NC
GND
IF
+
IF
GND
NC
LO
+
LO
NC
EN
V
CC1
V
CC2
NC
17
T
JMAX
= 125
C,
JA
= 37
C/W
5512
PART MARKING
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
RF Input Frequency Range
2
Requires Appropriate Matching
0.001 to 3000
MHz
LO Input Frequency Range
2
Requires Appropriate Matching
0.001 to 3000
MHz
IF Output Frequency Range
2
Requires Appropriate Matching
0.001 to 2000
MHz
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
Conversion Gain
f
RF
= 900MHz
0
dB
f
RF
= 1900MHz
1
1
dB
Conversion Gain vs Temperature
T
A
= 40
C to 85
C
0.011
dB/
C
Input 3rd Order Intercept
f
RF
= 900MHz
21
dBm
f
RF
= 1900MHz
17
dBm
Single-Sideband Noise Figure
f
RF
= 900MHz
11
dB
f
RF
= 1900MHz
14
dB
LO to RF Leakage
f
LO
= 730MHz
60
dBm
f
LO
= 1730MHz
53
dBm
LO to IF Leakage
f
LO
= 730MHz and 1730MHz
46
dBm
RF to LO Isolation
f
RF
= 900MHz
57
dB
f
RF
= 1900MHz
50
dB
2RF-2LO Output Spurious Product
900MHz: f
RF
= 815MHz at 12dBm
66
dBc
(f
RF
= f
LO
+ f
IF/2
)
1900MHz: f
RF
= 1815MHz at 12dBm
59
dBc
3RF-3LO Output Spurious Product
900MHz: f
RF
= 786.67MHz at 12dBm
83
dBc
(f
RF
= f
LO
+ f
IF/3
)
1900MHz: f
RF
= 1786.67MHz at 12dBm
58
dBc
Input 1dB Compression
f
RF
= 900MHz
10.1
dBm
f
RF
= 1900MHz
6.2
dBm
Downmixer Application: (Test Circuit Shown in Figure 2) V
CC
= 5V
DC
, EN = High, T
A
= 25
C, P
RF
= 10dBm (10dBm/tone for two-tone
IIP3 tests,
f = 200kHz), f
LO
= f
RF
170MHz, P
LO
= 10dBm, IF output measured at 170MHz, unless otherwise noted. (Notes 2, 3)
background image
LT5512
3
5512f
1230MHz Cable Infrastructure Downmixer Application: (Test Circuit Shown
in Figure 3) V
CC
= 5V
DC
, EN = High, T
A
= 25
C, RF input = 1230MHz at 10dBm, LO input swept from 1500MHz to 2100MHz,
P
LO
= 10dBm, IF output measured from 270MHz to 870MHz, unless otherwise noted.
ELECTRICAL CHARACTERISTICS
Note 1: Absolute Maximum Ratings are those values beyond which the life
of a device may be impaired.
Note 2: External components on the final test circuit are optimized for
operation at f
RF
= 1900MHz, f
LO
= 1730MHz and f
IF
= 170MHz (Figure 2).
Note 3: Specifications over the 40
C to 85
C temperature range are
assured by design, characterization and correlation with statistical process
controls.
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
Conversion Gain
f
LO
= 1800MHz, f
IF
= 570MHz
2.8
dB
Input 3rd Order Intercept
2-Tone RF Input, 10dBm/Tone,
f = 1MHz,
17.9
dBm
f
LO
= 1800MHz, f
IF
= 570MHz
LO to RF Leakage
56
dBm
LO to IF Leakage
40
dBm
RF to LO Isolation
51
dB
2RF LO Output Spurious Product
f
IF
= 570MHz, P
RF
= 18dBm, f
LO
= 1800MHz
60
dBc
Single-Sideband Noise Figure
f
LO
= 1800MHz, f
IF
= 570MHz
13.3
dB
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
Enable (EN) Low = Off, High = On
Turn On Time
3
s
Turn Off Time
13
s
Input Current
V
ENABLE
= 5V
DC
50
A
Enable = High (On)
3
V
DC
Enable = Low (Off)
0.3
V
DC
Power Supply Requirements (V
CC
)
Supply Voltage
4.50
5.25
V
DC
Supply Current
57
74
mA
Shutdown Current
EN = Low
100
A
(Test Circuit Shown in Figure 2) V
CC
= 5V
DC
, EN = High, T
A
= 25
C
(Note 3), unless otherwise noted.
DC ELECTRICAL CHARACTERISTICS
(Test Circuit Shown in Figure 2)
TYPICAL PERFOR A CE CHARACTERISTICS
U
W
SUPPLY VOLTAGE (V)
4.5
5.5
5512 G01
4.75
5.0
5.25
SUPPLY CURRENT (mA)
59
58
57
56
55
54
53
52
51
50
49
T
A
= 85
C
T
A
= 25
C
T
A
= 40
C
SUPPLY VOLTAGE (V)
5.5
5512 G02
4.75
5.0
5.25
4.5
SHUTDOWN CURRENT (
A)
10
100
1
0.1
T
A
= 85
C
T
A
= 25
C
T
A
= 40
C
Supply Current vs Supply Voltage
Shutdown Current vs Supply Voltage
background image
LT5512
4
5512f
Conv Gain and IIP3 vs
Supply Voltage
Output IF Power and Output IM3 vs
RF Input Power (Two Input Tones)
RF, LO and IF Port Return Loss
vs Frequency
Conv Gain, IIP3 and SSB NF vs
RF Frequency (Low-Side LO)
Conv Gain, IIP3 and SSB NF vs
RF Frequency (High-Side LO)
Conv Gain and IIP3 vs Temperature
RF = 1900MHz, IF = 170MHz
Conv Gain and IIP3 vs
LO Input Power
SSB Noise Figure vs
LO Input Power
LO-IF and LO-RF Leakage vs
LO Input Power
TYPICAL PERFOR A CE CHARACTERISTICS
U
W
(1900MHz Downmixer Application)
V
CC
= 5V
DC
, EN = High, T
A
= 25
C, 1900MHz RF input matching, RF input = 1900MHz at 10dBm, LO input = 1730MHz at 10dBm, IF
output measured at 170MHz, unless otherwise noted. (Test circuit shown in Figure 2).
RF FREQUENCY (MHz)
1700
2100
2000
5512 G03
1800
1900
CONV GAIN (dB), NF (dB), IIP3 (dBm)
18
16
14
12
10
8
6
4
2
0
IIP3
SSB NF
CONV GAIN
f
IF
= 170MHz
T
A
= 25
C
RF FREQUENCY (MHz)
1700
2100
5512 G04
1800
1900
2000
CONV GAIN (dB), NF (dB), IIP3 (dBm)
18
16
14
12
10
8
6
4
2
0
IIP3
SSB NF
CONV GAIN
f
IF
= 170MHz
T
A
= 25
C
TEMPERATURE (
C)
50
25
100
5512 G05
0
25
50
75
CONV GAIN (dB), IIP3 (dBm)
20
18
16
14
12
10
8
6
4
2
0
IIP3
CONV GAIN
LOW-SIDE LO
HIGH-SIDE LO
LOW-SIDE LO
HIGH-SIDE LO
LO INPUT POWER (dBm)
18
CONV GAIN (dB), IIP3 (dBm)
20
18
16
14
12
10
8
6
4
2
0
10
5512 G06
16 14 12
2
4
6
8
IIP3
CONV GAIN
T
A
= 85
C
T
A
= 25
C
T
A
= 40
C
T
A
= 40
C
T
A
= 25
C
T
A
= 85
C
LO INPUT POWER (dBm)
18
SSB NF (dB)
16.0
15.5
15.0
14.5
14.0
13.5
13.0
12.5
12.0
10
5512 G07
16 14 12
2
4
6
8
LOW-SIDE LO
HIGH-SIDE LO
f
RF
= 1900MHz
f
IF
= 170MHz
T
A
= 25
C
LO INPUT POWER (dBm)
18
LO LEAKAGE (dBm)
20
25
30
35
40
45
50
55
60
10
5512 G08
16 14 12
2
4
6
8
f
LO
= 1730MHz
T
A
= 25
C
LO-IF
LO-RF
SUPPLY VOLTAGE (V)
4.5
5.5
5512 G09
4.75
5.0
5.25
CONV GAIN (dB), IIP3 (dBm)
18
16
14
12
10
8
6
4
2
0
T
A
= 40
C
T
A
= 40
C
IIP3
CONV GAIN
T
A
= 85
C
T
A
= 85
C
T
A
= 25
C
T
A
= 25
C
RF INPUT POWER (dBm/TONE)
21
P
OUT
, IM3 (dBm/TONE)
10
0
10
20
30
40
50
60
70
80
90
15
9
6
5512 G10
18
12
3
0
3
T
A
= 25
C
T
A
= 85
C
T
A
= 85
C
P
OUT
IM3
T
A
= 40
C
T
A
= 40
C
T
A
= 25
C
IF
LO
RF
FREQUENCY (MHz)
0
RETURN LOSS (dB)
0
5
10
15
20
25
30
500
1000
1500
2000
5512 G11
2500
3000
T
A
= 25
C
background image
LT5512
5
5512f
Conv Gain, IIP3 and SSB NF
vs IF Output Frequency
LO Leakage vs LO Frequency
IF Output Power and 2RF-LO Spur
vs RF Input Power
TYPICAL PERFOR A CE CHARACTERISTICS
U
W
(1230MHz Cable Infrastructure Downmixer Application) V
CC
= 5V
DC
, EN = High, T
A
= 25
C, RF input = 1230MHz at 10dBm, LO input
swept from = 1500MHz to 2100MHz, P
LO
= 10dBm, IF output measured from 270MHz to 870MHz, unless otherwise noted. (Test circuit
shown in Figure 3.)
Conv Gain, IIP3 and SSB NF
vs LO Input Power
Conv Gain and IIP3 vs
Temperature
RF, LO and IF Port Return Losses
vs Frequency
IF OUTPUT FREQUENCY (MHz)
270
370
870
5512 G12
470
570
670
770
CONV GAIN (dB), NF (dB), IIP3 (dBm)
20
18
16
14
12
10
8
6
4
2
0
IIP3
CONV GAIN
SSB NF
T
A
= 25
C
T
A
= 40
C
T
A
= 40
C
T
A
= 25
C
T
A
= 85
C
T
A
= 85
C
T
A
= 25
C
LO-IF
LO-RF
LO FREQUENCY (MHz)
1500
dBm
10
20
30
40
50
60
70
1600
1700
1800
1900
5512 G13
2000
2100
RF INPUT POWER (dBm)
21
dBm
10
0
10
20
30
40
50
60
70
80
90
15
9
6
5512 G14
18
12
3
0
T
A
= 85
C
T
A
= 85
C
P
OUT
2RF-LO
T
A
= 40
C
T
A
= 40
C
T
A
= 25
C
T
A
= 25
C
f
LO
= 1800MHz
f
IF
= 570MHz
IIP3
T
A
= 25
C
T
A
= 85
C
LO INPUT POWER (dBm)
20
0
5512 G15
15
10
5
CONV GAIN (dB), IIP3 (dBm), NF (dB)
20
18
16
14
12
10
8
6
4
2
T
A
= 25
C
T
A
= 40
C
T
A
= 40
C
T
A
= 85
C
CONV GAIN
SSB NF
T
A
= 25
C
f
LO
= 1800MHz
f
IF
= 570MHz
TEMPERATURE (
C)
50
85
5512 G16
20
35
40
25
10
5
55
70
CONV GAIN (dB), IIP3 (dBm), NF (dB)
20
18
16
14
12
10
8
6
4
2
CONV GAIN
4.5, 5.0 AND 5.5V
DC
4.5V
DC
5.5V
DC
IIP3
5V
DC
f
LO
= 1800MHz
f
IF
= 570MHz
IF
LO
RF
FREQUENCY (MHz)
0
RETURN LOSS (dB)
0
5
10
15
20
25
30
500
1000
1500
2000
5512 G17
2500
RF INPUT POWER (dBm)
IF OUTPUT POWER (dBm)
5512 G18
10
10
30
50
70
90
110
22
16
10
7
19
13
4
1
2
P
OUT
(RF = 1900MHz)
2RF-2LO
(RF = 1815MHz)
3RF-3LO
(RF = 1786.67MHz)
T
A
= 25
C
f
LO
= 1730MHz
P
LO
= 10dBm
LO INPUT POWER (dBm)
18 16
12
8
4
SPUR LEVEL (dBm)
2
5512 G19
14
10
6
50
55
60
65
70
75
80
85
90
P
RF
= 16dBm
P
RF
= 10dBm
T
A
= 25
C
f
LO
= 1730MHz
f
RF
= 1815MHz
LO INPUT POWER (dBm)
18 16
12
8
4
SPUR LEVEL (dBm)
2
5512 G20
14
10
6
50
55
60
65
70
75
80
85
90
P
RF
= 16dBm
P
RF
= 10dBm
T
A
= 25
C
f
LO
= 1730MHz
f
RF
= 1786.67MHz
IF Output Power, 2RF-2LO and
3RF-3LO vs RF Input Power
2RF-2LO (Half-IF) Spur Level vs
LO Input Power
3RF-3LO Spur Level vs
LO Input Power
(1900MHz Downmixer Application, continued)
V
CC
= 5V
DC
, EN = High, T
A
= 25
C, 1900MHz RF input matching, RF input = 1900MHz at 10dBm, LO input = 1730MHz at 10dBm, IF
output measured at 170MHz, unless otherwise noted. (Test circuit shown in Figure 2).