ChipFind - документация

Электронный компонент: LTC1380

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
1
LTC1380/LTC1393
Single-Ended 8-Channel/
Differential 4-Channel Analog
Multiplexer with SMBus Interface
V
S
(V)
5
ON RESISTANCE (
)
150
200
250
3
1167 G15
100
50
125
175
225
75
25
0
3
1
1
4
4
2
0
2
5
V
CC
= 2.7V
V
EE
= 0V
T
A
= 25
C
I
D
= 1mA
V
CC
= 5V
V
EE
= 0V
V
CC
= 5V
V
EE
= 5V
On Resistance vs V
S
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
LTC1380
0.1
F
15k
8 ANALOG
INPUTS
15k
0.1
F
5V
5V
ANALOG OUTPUT
1380/93 TA01
S0
S1
S2
S3
S4
S5
S6
S7
V
CC
SCL
SDA
A0
A1
GND
V
EE
D
O
SMBus
HOST
SCL
SDA
LTC1380 Single-Ended 8-Channel Multiplexer
TYPICAL APPLICATIO
N
U
The LTC
1380/LTC1393 are CMOS analog multiplexers with
SMBus
compatible digital interfaces. The LTC1380 is a
single-ended 8-channel multiplexer, while the LTC1393 is a
differential 4-channel multiplexer. The SMBus digital inter-
face requires only two wires (SCL and SDA). Both the
LTC1380 and the LTC1393 have four hard-wired SMBus
addresses, selectable with two external address pins. This
allows four devices, each with a unique SMBus address, to
coexist on one system and for four devices to be synchro-
nized with one stop bit.
The supply current is typically 10
A. Both digital interface
pins are SMBus compatible over the full operating supply
voltage range. The LTC1380 analog switches feature a
typical R
ON
of 35
(
5V supplies), typical switch leakage of
20pA and guaranteed break-before-make operation. Charge
injection is
1pC typical.
The LTC1380/LTC1393 are available in 16-lead SO and GN
packages. Operation is fully specified over the commercial
and industrial temperature ranges.
s
Micropower Operation: Supply Current = 20
A Max
s
2-Wire SMBus Interface
s
Single 2.7V to
5V Supply Operation
s
Expandable to 32 Single or 16 Differential Channels
s
Guaranteed Break-Before-Make
s
Low R
ON
: 35
Single Ended/70
Differential
s
Low Charge Injection: 20pC Max
s
Low Leakage:
5nA Max
s
Available in 16-Lead SO and GN Packages
FEATURES
DESCRIPTIO
N
U
, LTC and LT are registered trademarks of Linear Technology Corporation.
SMBus is a registered trademark of Intel Corporation.
s
Data Acquisition Systems
s
Process Control
s
Laptop Computers
s
Signal Multiplexing/Demultiplexing
s
Analog-to-Digital Conversion Systems
APPLICATIO
N
S
U
background image
2
LTC1380/LTC1393
ABSOLUTE
M
AXI
M
U
M
RATINGS
W
W
W
U
(Note 1)
Total Supply Voltage
LTC1380 (V
CC
to V
EE
) ......................................... 15V
LTC1393 (V
CC
to GND) ....................................... 15V
Analog Input Voltage
LTC1380 ............................. V
EE
0.3V to V
CC
+ 0.3V
LTC1393 ................................... 0.3V to V
CC
+ 0.3V
Digital Inputs ............................................. 0.3V to 15V
LTC1380 (V
CC
TO V
EE
) .... (V
EE
0.3V) to (V
EE
+ 15V)
LTC1393 (V
CC
to GND) .......................... 0.3V to 15V
Maximum Switch-On Current .............................. 65mA
Power Dissipation ............................................. 500mW
Operating Ambient Temperature Range
LTC1380C/LTC1393C ....................... 0
C
T
A
70
C
LTC1380I/LTC1393I .................... 40
C
T
A
85
C
Junction Temperature ........................................... 125
C
Storage Temperature Range ................. 65
C to 150
C
Lead Temperature (Soldering, 10 sec) .................. 300
C
PACKAGE/ORDER I
N
FOR
M
ATIO
N
W
U
U
ORDER PART
NUMBER
ORDER PART
NUMBER
LTC1393CGN
LTC1393CS
LTC1393IGN
LTC1393IS
LTC1380CGN
LTC1380CS
LTC1380IGN
LTC1380IS
TOP VIEW
S PACKAGE
16-LEAD PLASTIC SO
GN PACKAGE
16-LEAD PLASTIC SSOP
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
S0
S1
S2
S3
S4
S5
S6
S7
V
CC
SCL
SDA
A0
A1
GND
V
EE
D
O
T
JMAX
= 125
C,
JA
= 130
C/ W (GN)
T
JMAX
= 125
C,
JA
= 100
C/ W (S)
T
JMAX
= 125
C,
JA
= 130
C/ W (GN)
T
JMAX
= 125
C,
JA
= 100
C/ W (S)
TOP VIEW
S PACKAGE
16-LEAD PLASTIC SO
GN PACKAGE
16-LEAD PLASTIC SSOP
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
S0
+
S0
S1
+
S1
S2
+
S2
S3
+
S3
V
CC
SCL
SDA
A0
A1
GND
D
O
D
O
+
Consult factory for Military grade parts.
ELECTRICAL CHARACTERISTICS
SYMBOL
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
V
ANALOG
Analog Signal Range
LTC1380
q
V
EE
V
CC
V
LTC1393
q
0
V
CC
V
R
ON
On Resistance
LT1380: V
CC
= 5V, V
EE
= 5V,
35
70
V
EE
(V
S
, V
D
)
V
CC
, I
D
=
1mA
q
120
LT1393: V
CC
= 5V,
70
140
0V
(V
S
, V
D
)
V
CC
, I
D
=
1mA
q
200
LT1380/LTC1393: V
CC
= 2.7V, V
EE
= 0V,
210
400
0V
(V
S
, V
D
)
V
CC
, I
D
=
1mA
q
600
R
ON
vs V
S
V
EE
(V
S
, V
D
)
V
CC
, V
CC
= 5V
20
%
R
ON
vs Temperature
V
CC
= 5V
0.5
%/
C
I
LEAK
Off-Channel or On-Channel
LTC1380: (V
EE
+ 0.5V)
(V
S
, V
D
)
(V
CC
0.5V)
0.05
5
nA
Switch Leakage
LTC1393: 0.5V
(V
S
, V
D
)
(V
CC
0.5V)
q
50
nA
(Notes 2, 4)
background image
3
LTC1380/LTC1393
ELECTRICAL CHARACTERISTICS
(Notes 2, 4)
The
q
denotes specifications which apply over the full operating
temperature range.
Note 1: Absolute Maximum Ratings are those values beyond which the life
of a device may be impaired.
Note 2: All current into device pins is positive; all current out of device
pins is negative. All voltages are referenced to ground unless otherwise
specified. All typicals are given for T
A
= 25
C, V
CC
= 5V (for both LTC1380
and LTC1393) and V
EE
= 5V (LTC1380).
Note 3: These typical parameters are based on bench measurements and
are not production tested.
Note 4: Both SCL and SDA assume an external 15k pull-up resistor to a
typical SMBus host power supply V
DD
of 5V.
Note 5: Typical curves with V
EE
= 5V apply to the LTC1380. Curves with
V
EE
= 0V apply to both the LTC1380 and the LTC1393.
Note 6: These parameters are guaranteed by design and are not tested in
production.
SYMBOL
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
V
IH
SCL, SDA Input High Voltage
q
1.4
V
V
IL
SCL, SDA Input Low Voltage
q
0.6
V
V
OL
SDA Output Low Voltage
I
SDA
= 3mA
q
0.4
V
V
AH
Address Input High Voltage
V
CC
= 5V
q
2
V
V
AL
Address Input Low Voltage
V
CC
= 5V
q
0.8
V
I
IN
SCL, SDA, Address Input Current
0V
V
IN
V
CC
1
A
I
CC
Positive Supply Current
V
CC
= 5V, All Digital Inputs at 5V
q
10
20
A
I
EE
Negative Supply Current
LTC1380: V
CC
= 5V, V
EE
= 5V, All Digital Inputs at 5V
q
0.1
5
A
C
S
Input Off Capacitance
(Note 3)
3
pF
C
D
Output Off Capacitance
(Note 3) LTC1380
26
pF
LTC1393
18
pF
t
ON
Switch Turn-On Time from
Figure 1 LTC1380: V
CC
= 5V, V
EE
= 5V
q
850
1500
ns
Stop Condition
LTC1393: V
CC
= 5V
q
850
1500
ns
LTC1380/LTC1393: V
CC
= 2.7V, V
EE
= 0V
q
1130
2000
ns
t
OFF
Switch Turn-Off Time from
Figure 1 LTC1380: V
CC
= 5V, V
EE
= 5V
q
640
1200
ns
Stop Condition
LTC1393: V
CC
= 5V
q
650
1200
ns
LTC1380/LTC1393: V
CC
= 2.7V, V
EE
= 0V
q
670
1200
ns
t
OPEN
Break-Before-Make Interval
t
ON
t
OFF
q
75
210
ns
OIRR
Off-Channel Isolation
Figure 2, V
S
= 200mV
P-P
, R
L
= 1k, f = 100kHz (Note 3)
65
dB
Q
INJ
Charge Injection
Figure 3, C
L
= 1000pF (Note 3)
q
1
20
pC
SMBus Timing (Note 6)
f
SMB
SMBus Operating Frequency
q
100
kHz
t
BUF
Bus Free Time Between Stop/Start
q
4.7
s
t
HD:STA
Hold Time After (Repeated) Start
q
4.0
s
t
SU:STA
Repeated Start Setup Time
q
4.7
s
t
SU:STO
Stop Condition Setup Time
q
4.0
s
t
HD:DAT
Data Hold Time
q
300
ns
t
SU:DAT
Data Setup Time
q
250
ns
t
LOW
Clock Low Period
q
4.7
s
t
HIGH
Clock High Period
q
4.0
s
t
f
SCL/SDA Fall Time
Time Interval Between 0.9V
DD
and (V
ILMAX
0.15)
q
300
ns
t
r
SCL/SDA Rise Time
Time Interval Between (V
ILMAX
0.15)
q
1000
ns
and (V
IHMIN
+ 0.15)
background image
4
LTC1380/LTC1393
TYPICAL PERFOR A CE CHARACTERISTICS
U
W
V
S
(V)
4.5
I
S
LEAKAGE (nA)
0.010
2.5
0.5 0.5
4.5
1380/93 G04
0.008
0.006
0.004
0.002
0
0.002
0.004
0.006
0.008
0.010
3.5
1.5
1.5 2.5 3.5
T
A
= 25
C
V
CC
= 5V
V
EE
= 5V
V
CC
= 5V
V
EE
= 0V
V
CC
= 2.7V
V
EE
= 0V
Off-Channel Output Leakage
vs Temperature
TEMPERATURE (
C)
50
1
10
1000
25
75
1380/93 G07
0.1
0.01
25
0
50
100
125
0.001
0.0001
100
I
D
LEAKAGE (nA)
V
CC
= 2.7V
V
EE
= 0V
V
D
= 1.35V
V
CC
= 5V
V
EE
= 5V
V
D
= 0V
V
CC
= 5V
V
EE
= 0V
V
D
= 2.5V
Off-Channel Input Leakage
vs Temperature
TEMPERATURE (
C)
50
25
0.0001
I
S
LEAKAGE (nA)
0.01
10
0
50
75
1380/93 G06
0.001
1
0.1
25
100
125
V
CC
= 5V
V
EE
= 0V
V
S
= 2.5V
V
CC
= 5V
V
EE
= 5V
V
S
= 0V
V
CC
= 2.7V
V
EE
= 0V
V
S
= 1.35V
On-Channel Output Leakage vs V
D
V
D
(V)
4.5
I
D
LEAKAGE (nA)
0.010
2.5
0.5 0.5
4.5
1380/93 G05
0.008
0.006
0.004
0.002
0
0.002
0.004
0.006
0.008
0.010
3.5
1.5
1.5 2.5 3.5
T
A
= 25
C
V
CC
= 5V
V
EE
= 5V
V
CC
= 5V
V
EE
= 0V
V
CC
= 2.7V
V
EE
= 0V
TEMPERATURE (
C)
50
0
ON RESISTANCE (
)
25
75
100
125
250
175
0
50
75
1380/93 G01
50
200
225
150
25
25
100
125
I
D
= 1mA
V
CC
= 2.7V
V
EE
= 0V
V
S
= 1.35V
V
CC
= 5V
V
EE
= 0V
V
S
= 2.5V
V
CC
= 5V
V
EE
= 5V
V
S
= 0V
On Resistance vs Temperature
V
S
(V)
4.5
I
S
LEAKAGE (nA)
0.0020
2.5
0.5 0.5
4.5
1380/93 G02
0.0018
0.0016
0.0014
0.0012
0.0010
0.0008
0.0006
0.0004
0.0002
0
3.5
1.5
1.5 2.5 3.5
T
A
= 25
C
V
CC
= 5V
V
EE
= 5V
V
CC
= 5V
V
EE
= 0V
V
CC
= 2.7V
V
EE
= 0V
V
D
(V)
4.5
I
D
LEAKAGE (nA)
0.010
2.5
0.5 0.5
4.5
1380/93 G03
0.008
0.006
0.004
0.002
0
0.002
0.004
0.006
0.008
0.010
3.5
1.5
1.5 2.5 3.5
T
A
= 25
C
V
CC
= 5V
V
EE
= 5V
V
CC
= 2.7V
V
EE
= 0V
V
CC
= 5V
V
EE
= 0V
Off-Channel Output Leakage vs V
D
On-Channel Input Leakage
vs Temperature
TEMPERATURE (
C)
50
1
10
1000
25
75
1380/93 G08
0.1
0.01
25
0
50
100
125
0.001
0.0001
100
I
S
LEAKAGE (nA)
V
CC
= 5V
V
EE
= 5V
V
S
= 0V
V
CC
= 5V
V
EE
= 0V
V
S
= 2.5V
V
CC
= 2.7V
V
EE
= 0V
V
S
= 1.35V
TEMPERATURE (
C)
50
1
10
1000
25
75
1380/93 G09
0.1
0.01
25
0
50
100
125
0.001
0.0001
100
I
D
LEAKAGE (nA)
V
CC
= 5V
V
EE
= 5V
V
D
= 0V
V
CC
= 5V
V
EE
= 0V
V
D
= 2.5V
V
CC
= 2.7V
V
EE
= 0V
V
D
= 1.35V
Off-Channel Input Leakage vs V
S
On-Channel Input Leakage vs V
S
On-Channel Output Leakage
vs Temperature
(Note 5)
background image
5
LTC1380/LTC1393
TYPICAL PERFOR A CE CHARACTERISTICS
U
W
Off Time vs Temperature
Q
INJ
vs V
C
(Figure 3)
On Time vs Temperature
TEMPERATURE (
C)
50
ON TIME (ns)
1400
25
1380/93 G11
800
400
25
0
50
200
0
1600
1200
1000
600
75
100
125
V
CC
= 2.7V
V
EE
= 0V
V
S
= 1.35V
V
CC
= 5V
V
EE
= 0V
V
S
= 2.5V
V
CC
= 5V
V
EE
= 5V
V
S
= 0V
V
C
(V)
5
Q
INJ
(pC)
3.0
4.0
5.0
3
1380/93 G12
2.0
1.0
2.5
3.5
4.5
1.5
0.5
0
3
1
1
4
4
2
0
2
5
T
A
= 25
C
V
CC
= 5V
V
EE
= 5V
V
CC
= 2.7V
V
EE
= 0V
V
CC
= 5V
V
EE
= 0V
TEMPERATURE (
C)
50
OFF TIME (ns)
700
25
1380/93 G10
400
200
25
0
50
100
0
800
600
500
300
75
100
125
V
CC
= 5V
V
EE
= 5V
V
S
= 0V
V
CC
= 2.7V
V
EE
= 0V
V
S
= 1.35V
V
CC
= 5V
V
EE
= 0V
V
S
= 2.5V
Q
INJ
vs Temperature (Figure 3)
TEMPERATURE (
C)
50
0
Q
INJ
(pC)
0.2
0.6
0.8
1.0
2.0
1.4
0
50
75
1380/93 G13
0.4
1.6
1.8
1.2
25
25
100
125
V
CC
= 5V
V
EE
= 5V
V
S
= 0V
V
CC
= 2.7V
V
EE
= 0V
V
S
= 1.35V
V
CC
= 5V
V
EE
= 0V
V
S
= 2.5V
Off-Channel Isolation vs Input
Common Mode Voltage (Figure 2)
I
CC
vs Temperature
TEMPERATURE (
C)
50
0
I
CC
(
A)
1
3
4
5
10
7
0
50
75
1380/93 G15
2
8
9
6
25
25
100
125
V
CC
= 5V
V
EE
= 5V
V
CC
= 2.7V
V
EE
= 0V
V
CC
= 5V
V
EE
= 0V
TEMPERATURE (
C)
50
100
I
EE
(nA)
90
70
60
50
0
30
0
50
75
1380/93 G16
80
20
10
40
25
25
100
125
V
CC
= 5V
V
EE
= 5V
V
S
= 0V
I
EE
vs Temperature
(Note 5)
V
C
(V)
5
OIRR (dB)
75
73
74
72
71
70
69
68
67
66
65
3
1380/93 G14
3
1
1
5
2
4
2
0
4
V
CC
= 5V
V
EE
= 5V
V
CC
= 5V
V
EE
= 0V
V
CC
= 2.7V
V
EE
= 0V
T
A
= 25
C
V
S
= 200mV
P-P
, 100kHz
R
L
= 1k