ChipFind - документация

Электронный компонент: PC810

Скачать:  PDF   ZIP
PC810
PC810
*3 For 10 seconds
s
Features
s
Applications
( t
off
: MAX. 1ms at I
F
= 1mA, V
CC
= 5V,
R
L
= 110k
)
2. High current transfer ratio under low
input current
( CTR : MIN. 60% at I
F
= 1mA, V
CE
= 0.4V)
3. High isolation voltage between input and
output
( V
iso
4. Compact dual-in-line package
1. Solid state relays
2. Motor-control equipment
3. Signal transmission between circuits of
different potentials and impedances
(Unit : mm)
s
Absolute Maximum Ratings
Parameter
Symbol
Rating
Unit
Input
Forward current
I
F
50
mA
*1
Peak forward current
I
FM
1
A
Reverse voltage
V
R
6
V
Power dissipation
P
70
mW
Output
Collector-emitter voltage
V
CEO
35
V
Emitter-collector voltage
V
ECO
6
V
Collector current
I
C
50
mA
Collector power dissipation
P
C
150
mW
Total power dissipation
P
tot
200
mW
*2
Isolation voltage
V
iso
Operating temperature
T
opr
- 30 to + 100
C
Storage temperature
T
stg
- 55 to + 125
C
*3
Soldering temperature
T
sol
260
C
*1 Pulse width<=100
s, Duty ratio : 0.001
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.
"
"
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
Anode mark
0.26
PC810
Internal connection
diagram
1
2
4
3
CTR
rank mark
2
1
3
4
1 Anode
2 Cathode
3 Emitter
4 Collector
5. Recognized by UL, file No. E64380
High Speed Under High Load
Resistance Photocoupler
s
Outline Dimensions
(T
a
= 25C)
5 000
*2 40 to 60% RH, AC for 1 minute
g Lead forming type ( I type ) and taping reel type ( P type ) are also available. (
PC810I/PC810P
)
load
1. High speed response under high resistance
: 5 000V
rms
)
V
rms
=
0 to 13
6.5
0.5
2.54
0.25
0.9
0.2
1.2
0.3
3.5
0.5
3.0
0.5
0.5
TYP.
0.5
4.58
0.1
2.7
0.5
7.62
0.3
PC810
Fig. 1 Forward Current vs.
Fig. 3 Paek Foward Current vs. Duty Ratio
s
Electro-optical Characteristics
( Ta = 25C)
*5 Classification table of current transfer ratio and response time is shown below
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
Input
Forward voltage
V
F
I
F
= 20mA
-
1.2
1.4
V
Peak forward voltage
V
FM
I
FM
= 0.5A
-
-
3.0
V
Reverse current
I
R
V
R
= 4V
-
-
10
A
Terminal capacitance
C
t
V = 0, f = 1kHz
-
30
pF
Output
Collector dark current
I
CEO
V
CE
= 20V, I
F
= 0
-
-
10
- 7
A
Transfer
charac-
teristics
*5
Current transfer ratio
CTR
I
F
= 1mA, V
CE
= 0.4V
60
-
200
%
Collector-emitter saturation voltage
V
CE ( sat )
I
F
= 20mA, I
C
= 1mA
-
0.1
0.2
V
Isolation resistance
R
ISO
5 x 10
10
10
11
-
Floating capacitance
C
f
V = 0, f = 1MHz
-
0.6
1.0
pF
Cut-off frequency
f
c
V
CE
= 5V, I
C
= 2mA, R
L
= 1k
, - 3dB
6
60
-
kHz
t
r
V
CE
= 2V, I
C
= 2mA, R
L
= 1k
-
10
50
s
t
f
-
10
50
s
*5
Turn-off time
t
off
V
CC
= 5V, I
F
= 1mA, R
L
= 110k
-
0.5
1.0
ms
Rise time
Fall time
*5
Response time
0
- 30
10
0
25
50
75
100
125
20
30
40
50
60
Ambient temperature T
a
(C)
Duty ratio
5
5
Pulse width <=100
s
10
20
100
50
200
500
2
5
2
5
2
5
Peak forward current I
FM
(
mA
)
0
0
125
100
200
50
150
25
50
75
100
Ambient Temperature
- 30
Forward current I
F
(
mA
)
Collector power dissipation P
C
(
mW
)
T
a
= 25C
Ambient temperature T
a
( C)
Ambient Temperature
Fig. 2 Collector Power Dissipation vs.
Rank
mark
t
r
(
s)
t
f
(
s)
t
off
(
s )
TYP. MAX. TYP. MAX. TYP. MAX.
PC810A
A
60 to 120
4
15
3
15
350
500
PC810B
B
100 to 200
10
50
10
50
500
PC810
A or B, or
no marking
60 to 200
-
50
-
50
-
Measurement
conditions
I
F
= 1mA
V
CE
= 0.4V
T
a
= 25C
V
CE
= 2V
I
C
= 2mA
T
a
= 25C
I
F
= 1mA
V
CC
= 5V
T
a
= 25C
Model
No.
R
L
= 1k
DC500V, 40 to 60% RH
1
R
L
= 110k
1 000
1 000
10 000
5 000
2 000
1 000
CTR ( % )
250
10
- 3
10
- 2
10
- 1
0
0
1
1
2
3
4
5
6
7
8
9
10
2
3
4
5
6
7
2 m A
1 m A
0.5mA
8
Fig. 6 Collector Current vs.
Collector-emitter Voltage
0
50
100
150
0
20
40
60
80
100
Relative current transfer ratio
(
%
)
A m b i e n t T e m p e r a t u r e
0
0.02
- 30
0
20
40
60
80
100
0.04
0.06
0.08
0.10
0.12
0.14
0.16
- 30
20
0
40
60
80
100
Fig. 9 Collector Dark Current vs.
A m b i e n t T e m p e r a t u r e
Collector current I
C
(mA
)
Collector-emitter voltage V
CE
(V)
Fig. 7 Relative Current Transfer Ratio vs.
Ambient temperature T
a
(C)
Fig. 8 Collector-emitter Saturation Voltage
v s . A m b i e n t T e m p e r a t u r e
CE
( sat
)
(V
)
Collector dark current I
CEO
(A
)
Ambient temperature T
a
(C)
Ambient temperature T
a
(C)
0
2
0.5
1.0
1.5
2.0
2.5
3.0
3.5
5
10
20
50
100
200
500
1
F o r w a r d V o l t a g e
Forward voltage V
F
(V)
Fig. 4 Forward Current vs.
0.1
0.5
0.2
1
2
5
240
10
220
200
180
160
0
20
50
60
80
100
120
140
20
40
0.4V
Fig. 5 Current Transfer Ratio vs.
F o r w a r d C u r r e n t
Forward current I
F
( mA )
Forward current I
F
(mA
)
- 30
PC810
Collector-emitter saturation voltage V
50C
25C
0C
- 25C
T
a
= 75C
T
a
= 25C
I
F
= 3mA
10
- 13
10
- 12
10
- 11
10
- 10
10
- 9
10
- 8
10
- 7
10
- 6
T
a
= 25C
V
CE
= 5V
I
F
= 1mA
V
CE
= 0.4V
I
F
= 20mA
I
C
= 1mA
V
CE
= 20V
Current transfer ratio CTR
(
%
)
PC810
Fig.13 Frequency Response
Frequency f ( kHz )
- 20
0
0.5
1
2
5
- 10
200
100
50
20
10
500
- 5
- 15
100
1k
Voltage gain A
v
(
dB
)
Response time
(
s
)
0.5
1
2
5
10
20
50
0.01
0.1
1
10
0.02
0.05
0.2
0.5
2
5
10
0
20
100
200
1 000
50
500
400
800
Turn-off time t
off
(
s
)
- 30
0
800
700
600
500
400
300
200
100
0
20
40
60
80
Fig.12 Turn-off Time vs.
Ambient Temperature
0
0
1
2
3
4
5
2
4
6
8
10
1.0mA
2.0mA
3.0mA
6
12
14
16
18
20
5.0mA
7.0mA
Collector-emitter saturation voltage V
CE
( sat
)
(V
)
Forward current I
F
( mA )
Fig.14 Collector-emitter Saturation Voltage
vs. Forward Current
Test Circuit for Response Time
V
CC
t
t
r
t
s
90
%
10
%
t
d
Output
Input
R
L
Input
Output
R
D
V
CC
R
L
Output
R
D
Test Circuit for Frepuency Response
Turn-off time t
off
(
s
)
Vcc = 5V
T
a
= 25C
V
CC
= 5V
R
L
= 110k
I
F
= 1mA
f
V
CE
= 2V
I
C
= 2mA
T
a
= 25C
t
f
t
r
t
d
t
s
I
F
= 1mA
V
CE
= 5V
I
C
= 2mA
T
a
= 25C
100
120
Ambient temperature T
a
( C)
R
L
= 10k
I
C
= 0.5mA
T
a
= 25C
2 400
2 000
1 600
1 200
Please refer to the chapter "Precautions for Use "
Fig.10 Response Time vs. Load Resistance
Fig.11 Turn-off Time vs. Load Resistance
Load resistance R
L
( k
)
Load resistance R
L
( k
)
q