BAE SYSTEMS

128K x 16 Radiation Hardened Static RAM MCM – 3.3 V

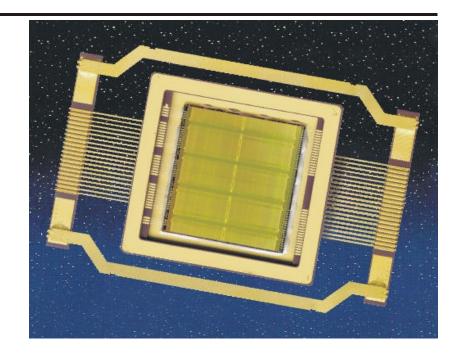
209A542

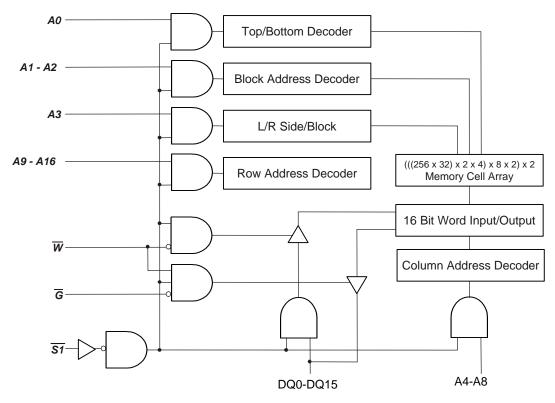
Features

Product Description

Radiation

- Fabricated with Bulk CMOS 0.5 µm Process
- Total Dose Hardness through 1x10⁶ rad(Si)
- Neutron Hardness through 1x10¹⁴ N/cm²
- Dynamic and Static Transient Upset Hardness through 1x10⁹ rad(Si)/s
- Soft Error Rate of < 1x10⁻¹¹ Upsets/Bit-Day
- · Latchup Free


Other


- Read/Write Cycle Times ≤30 ns (-55 °C to 125°C)
- SMD Number Pending
- · Asynchronous Operation
- CMOS or TTL Compatible I/O
- Single 3.3 V ±5% Power Supply
- · Low Operating Power
- · Packaging Options
 - 40-Lead Dual Flat Pack (0.855" x 0.710")

General Description

The 128K x 16 radiation hardened static RAM is composed of two 128K x 8 SRAM memory die assembled in a double-sided ceramic substrate. Each die is a high performance 131,072 word x 8-bit static random access memory with industrystandard functionality. It is fabricated with BAE SYSTEMS' radiation hardened technology and is designed for use in systems operating in radiation environments. The RAM operates over the full military temperature range and requires a single 3.3 V ±5% power supply. The RAM is available with CMOS compatible I/O. Power consumption is typically less than 40 mW/MHz in operation, and less than 20 mW in the low power disabled mode. The RAM read operation is fully asynchronous, with an associated typical access time of 19 nanoseconds.

BAE SYSTEMS' enhanced bulk CMOS technology is radiation hardened through the use of advanced and proprietary design, layout, and process hardening techniques.

Signal Definitions

- A: 0-16 Address input pins that select a particular 16-bit word within the memory array.
- DQ: 0-15 Bi-directional data pins that serve as data outputs during a read operation and as data inputs during a write operation.
 - Negative chip select, when at a low level, allows normal read or write operation.
 When at a high level, \$\overline{S}\$1 forces the SRAM to a precharge condition, holds the data output drivers in a high impedance state and disables the data input buffers only. If this signal is not used, it must be connected to GND.
- Negative write enable, when at a low level, activates a write operation and holds the data output drivers in a high impedance state. When at a high level, W allows normal read operation.
- Negative output enable, when at a high level holds the data output drivers in a high impedance state. When at a low level, the data output driver state is defined by \$\overline{S}1\$ and \$\overline{W}\$. If this signal is not used it must be connected to GND.

Truth Table

Mode		Dower			
Wode	<u>s</u> 1	\overline{W}	G	1/0	Power
Write	Low	Low	Х	Data-In	Active
Read	Low	High	Low	Data-Out	Active
Standby	Х	X	Х	High-Z	Standby
Standby ⁽³⁾	High	X	Х	High-Z	Standby

Notes:

- 1) V_{IN} for don't care (X) inputs = V_{IL} or V_{IH} .
- 2) When $\overline{G} = high$, I/O is high-Z.
- 3) To dissipate the minimum amount of standby power when in standby mode: $\overline{S}1 = V_{DD}$. All other input levels may float.

Applied Conditions ⁽¹⁾	Minimum	Maximum	
Storage Temperature Range (Ambient)	-65°C	+150°C	
Operating Temperature Range T _{CASE}	-55°C	+125°C	
Positive Supply Voltage	-0.5 V	+5.5 V	
Input Voltage(2)	-0.5 V	V _{DD} + 0.5 V	
Output Voltage ⁽²⁾	-0.5 V	V _{DD} + 0.5 V	
Power Dissipation ⁽³⁾		1.25 W	
Lead Temperature (Soldering 5 sec)		+230°C	
Electrostatic Discharge Sensitivity(4)	static Discharge Sensitivity ⁽⁴⁾ (Class II)		

Notes:

- 1) Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. All voltages are with reference to the module ground leads.
- 2) Maximum applied voltage shall not exceed +5.5 V.
- 3) Guaranteed by design; not tested.
- 4) Class as defined in MIL-STD-883, Method 3015.

Recommended Operating Conditions

Symbol	Parameters ⁽¹⁾	Minimum	Maximum	Units
V_{DD}	Supply Voltage	+3.14	+3.46	Volt
GND	Supply Voltage Reference	0.0	0.0	Volt
T _C	Case Temperature	-55	+125	Celsius
V_{IL}	Input Logic "Low"	-0.3	+0.8	Volt
V _{IH}	Input Logic "High"	+2.0	V_{DD}	Volt

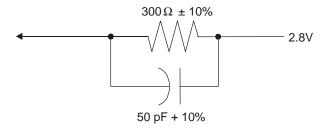
Note:

1)All voltages referenced to GND.

Power Sequencing

Power shall be applied to the device only in the following sequences to prevent damage due to excessive currents:

Power-Up Sequence: GND, V_{DD}, Inputs
 Power-Down Sequence: Inputs, V_{DD}, GND

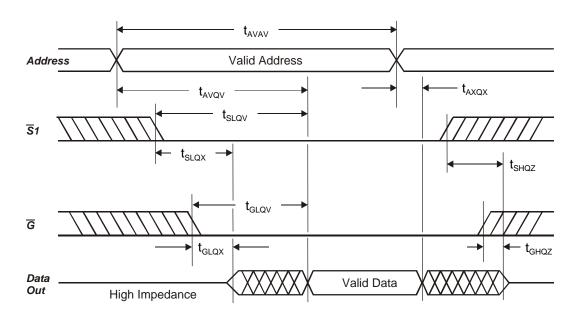

DC Electrical Characteristics

Test	Symbol Test Conditions(1)		Device Type	Lim	Units	
rest	Syllibol	Test Conditions(1)	Device Type	Minimum	Maximum	Units
Supply Current (Cycling Selected)	I _{DD1}	$ \frac{\mathbf{F}}{\mathbf{S}} = \mathbf{F}_{MAX} = 1/\mathbf{t}_{AVAV(min)} $ $ \mathbf{S}1 = \mathbf{G}ND $ No Output Load	All		360	mA
Supply Current (Cycling De-Selected)	I _{DD2}	$\frac{\mathbf{F} = \mathbf{F}_{MAX} = 1/t_{AVAV(min)}}{S1 = V_{DD}}$	All		6.0	mA
Supply Current (Standby)	I _{DD3}	F = 0 MHz $S1 = V_{DD}$	All		6.0	mA
Data Retention Current	I _{DR}	V _{DD} = 2.5 V	All		4.0	mA
High Level Output Voltage	V _{OH}	I_{OH} = -4 mA I_{OH} = -200 μ A	All	4.0 V _{DD} - 0.5 V		V
Low Level Output Voltage	V _{OL}	$I_{OL} = 8 \text{ mA}$ $I_{OL} = 200 \mu\text{A}$	All		0.4 0.05	V
High Level Input Voltage	V _{IH}		All	2.0		V
Low Level Input Voltage	V_{IL}		All		0.8	V
Input Leakage	I _{ILK}	$0 \text{ V} \leq V_{IN} \leq 5.5 \text{ V}$	All	-20	20	μΑ
Output Leakage	I _{OLK}	$0 \text{ V} \le \text{V}_{\text{OUT}} \le 5.5 \text{ V}$	All	-20	20	μΑ
C _{in}	(2)	By Design/ Verified By Characterization	All		6	pF
C _{out}	(2)	By Design/ Verified By Characterization	All		9	pF

Note:

- Typical operating conditions:
 -55°C £ T_{case} £ +125°C; 3.14 V £ V_{DD} £ 3.46 V; unless otherwise specified.
 Guaranteed by design and verified by periodic characterization.

Output Load Circuit

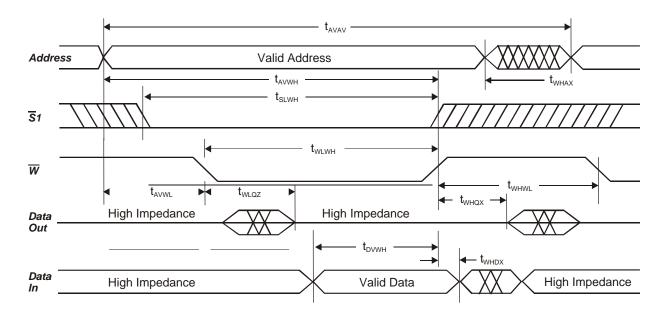


Test	Symbol	Minimum or Maximum	Device Type	Limits	Units
Read Cycle Time	t _{AVAV} (2)	Minimum	All	30	ns
Address Access Time	t _{AVQV}	Maximum	All	30	ns
Chip Select Access Time	t _{SLQV}	Maximum	All	30	ns
Output Enable Access Time	t _{GLQV}	Maximum	All	15	ns
Chip Select to Output Active	t _{SLQX}	Minimum	All	0	ns
Output Enable to Output Active	t _{GLQX}	Minimum	All	0	ns
Output Hold After Address Change	t _{AXQX}	Minimum	All	0	ns
Chip Select to Output Disable	t _{shqz}	Maximum	All	15	ns
Output Enable to Output Disable	t _{GHQZ}	Maximum	All	15	ns

Notes:

1) Test conditions: input switching levels $V_{\rm IL}/V_{\rm IH} = 0.5~{\rm V/V_{DD}}$ -0.5 V (CMOS), input rise and fall times < 5 ns, input and output timing reference levels shown in the Tester AC Timing Characteristics table, capacitive output loading $C_L = 50$ pF. For $C_L > 50$ pF, derate access times by 0.02 ns/pF (typical). -55°C £ $T_{\rm case}$ £ +125°C; 3.14 V £ $V_{\rm DD}$ £ 3.46 V; unless otherwise specified. 2) Cycle time per individual die.

Read Cycle Timing Diagram



Test	Symbol	Minimum or Maximum	Device Type	Limits	Units
Write Cycle Time	t _{AVAV}	Minimum	All	40	ns
Write Pulse Width Access Time	t _{WLWH}	Minimum	All	25	ns
Chip Select to End of Write	t _{SLWH}	Minimum	All	35	ns
Data Setup to End of Write	t _{DVWH}	Minimum	All	35	ns
Address Setup to End of Write	t _{AVWH}	Minimum	All	35	ns
Data Hold After End of Write	t _{WHDX}	Minimum	All	5	ns
Address Setup to Start of Write	t _{AVWL}	Minimum	All	0	ns
Address Hold After End of Write	t _{WHAX}	Minimum	All	0	ns
Write Enable to Output Disable	t _{WLQZ}	Maximum	All	18	ns
Output Active After End of Write	t _{WHQX}	Minimum	All	1	ns
Write Disable Pulse Width	t _{WHWL}	Minimum	All	15	ns

Note:

1) Test conditions: input switching levels $V_{IL}/V_{IH} = 0.5 \text{ V/V}_{DD}$ - 0.5 V (CMOS), input rise and fall times < 5 ns, input and output timing reference levels shown in the Tester AC Timing Characteristics table, capacitive output loading = 50 pF. -55°C £ T_{case} £ +125°C; 3.14 V £ V_{DD} £ 3.46 V; unless otherwise specified.

Write Cycle Timing Diagram

Dynamic Electrical Characteristics

Read Cycle

The RAM is asynchronous in operation, allowing the read cycle to be controlled by address, chip select ($\overline{S1}$) (refer to Read Cycle Timing diagram). To perform a valid read operation, both chip select and output enable (\overline{G}) must be low and chip enable and write enable (\overline{W}) must be high. The output drivers can be controlled independently by the \overline{G} signal. Consecutive read cycles can be executed with $\overline{S1}$ held continuously low, and toggling the addresses.

For an address-activated read cycle, $\overline{S}1$ must be valid prior to or coincident with the activating address edge transition(s). Any amount of toggling or skew between address edge transitions is permissible; however, data outputs will become valid t_{AVQV} time following the latest occurring address edge transition. The minimum address activated read cycle time is t_{AVAV} . When the RAM is operated at the minimum address-activated read cycle time, the data outputs will remain valid on the RAM I/O until t_{AXQX} time following the next sequential address transition.

To control a read cycle with $\overline{S}1$, all addresses must be valid prior to or coincident with the enabling $\overline{S}1$ edge transition. Address transitions can occur later than the specified setup times to $\overline{S}1$; however, the valid data access time will be delayed. Any address edge transition, that occurs during the time when $\overline{S}1$ is low, will initiate a new read access, and data outputs will not become valid until t_{AVQV} time following the address edge transition. Data outputs will enter a high impedance state t_{SHQZ} time following a disabling $\overline{S}1$ edge transition.

Write Cycle

The write operation is synchronous with respect to the address bits, and control is governed by write enable (\overline{W}) , chip select $(\overline{S1})$ edge transitions (refer to Write Cycle Timing diagrams). To perform a write operation, both \overline{W} and $\overline{S1}$ must be low. Consecutive write cycles can be performed with \overline{W} or $\overline{S1}$ held continuously low. At least one of the control signals must transition to the opposite state between consecutive write operations.

The write mode can be controlled via two different control signals: W and S1. Both modes of control are similar except the S1 controlled mode actually disables the RAM during the write recovery pulse. Only the W controlled mode is shown in the table and diagram on the previous page for simplicity. However, each mode of control provides the same write cycle timing characteristics. Thus, some of the parameter names referenced below are not shown in the write cycle table or diagram, but indicate which control pin is in control as it switches high or low.

To write data into the RAM, W and S1 must be held low for at least t_{wLwH} /t_{sLSH} time. Any amount of edge skew between the signals can be tolerated and any one of the control signals can initiate or terminate the write operation. For consecutive write operations, write pulses must be separated by the minimum specified t_{WHWL}/t_{SLSH} time. Address inputs must be valid at least t_{AVWI} /t_{AVSI} time before the enabling W/S1 edge transition, and must remain valid during the entire write time. A valid data overlap of write pulse width time of t_{DVWH} /t_{DVSH}, and an address valid to end of write time of t_{AVWH} /t_{AVSH} also must be provided for during the write operation. Hold times for address inputs and data inputs with respect to the disabling W/S1 edge transition must be a minimum of $t_{\mbox{\tiny WHAX}}/t_{\mbox{\tiny SHAX}}$ time and $t_{\mbox{\tiny WHDX}}/t_{\mbox{\tiny SHDX}}$ time, respectively. The minimum write cycle time is t_{AVAV}.

Radiation Characteristics

Total Ionizing Radiation Dose

The SRAM will meet all stated functional and electrical specifications over the entire operating temperature range after a total ionizing radiation dose of $1x10^6$ rad(Si). All electrical and timing performance parameters will remain within specifications after rebound at $V_{DD}=3.3~V$ and $T=125^{\circ}C$ extrapolated to ten years of operation. Total dose hardness is assured by wafer level testing of process monitor transistors and RAM product using 10 keV X-ray and Co60 radiation sources. Transistor gate threshold shift correlations have been made between 10 keV X-rays applied at a dose rate of $1x10^5$ rad(Si)/min at $T=25^{\circ}C$ and gamma rays (Cobalt 60 source) to ensure that wafer level X-ray testing is consistent with standard military radiation test environments.

Transient Pulse Ionizing Radiation

The SRAM is capable of writing, reading, and retaining stored data during and after exposure to a transient ionizing radiation pulse of ≤ 50 ns duration up to 1×10^9 rad(Si)/s, when applied under recommended operating conditions. To ensure validity of all specified performance parameters before, during, and after radiation (timing degradation during transient pulse radiation is $\leq 10\%$), stiffening capacitance can be placed on the package between the package (chip) V_{DD} and GND with the inductance between the package (chip) and stiffening capacitance kept to a minimum. If there are no operate-through or valid stored data requirements, typical de-coupling capacitors should be mounted on the circuit board as close as possible to each device.

The SRAM will meet any functional or electrical specification after exposure to a radiation pulse of \leq 50 ns duration up to $1x10^{12}$ rad(Si)/s, when applied under recommended operating conditions. Note that the current conducted during the pulse by the RAM inputs, outputs, and power supply may significantly exceed the normal operating levels. The application design must accommodate these effects.

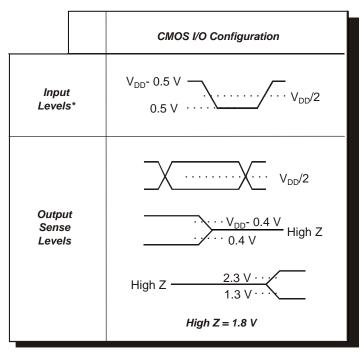
Neutron Radiation

The SRAM will meet any functional or timing specification after a total neutron fluence of up to 1x10¹⁴ cm⁻² applied under recommended operating or storage conditions. This assumes an equivalent neutron energy of 1 MeV.

Soft Error Rate

The SRAM has a soft error rate (SER) performance of <1x10⁻¹¹ upsets/bit-day, under recommended operating conditions. This hardness level is defined by the Adams 90% worst case cosmic ray environment.

Latchup


The SRAM will not latch up due to any of the above radiation exposure conditions when applied under recommended operating conditions.

Radiation Hardness Ratings (1),(2)

Symbol	Characteristics	Conditions	Minimum	Maximum	Units
RTD	Total Dose		1E + 06		rad(Si)
SEU1	Single Event Upset(3)	-55°C ≤ T _{case} ≤ 80°C		1E - 11	Upsets/Bit-Day
SEU2	Single Event Upset (3)	-55°C ≤ T _{case} ≤ 125°C		1E - 10	Upsets/Bit-Day
RNF	Neutron Fluence		1E + 14		N/cm ²
SEU1	Single Event Induced Latchup (4)	-55°C ≤ T _{case} ≤ 125°C			MeV
SEL	Single Event Induced Latchup (4)	$-55^{\circ}C \le T_{case} \le 125^{\circ}C$ $V_{DD} = 3.46 \text{ V}$			Immune

Notes:

- 1) Measured at room temperature unless otherwise stated. Verification test per TRB approved test plan.
- 2) Device electrical characteristics are guaranteed for post irradiation levels at 25°C.
- 3) 90% worst case particle environment, geosynchronous orbit, 0.025" of aluminum shielding. Specification set using the CREME code upset rate calculation method with a 2 µm epi thickness.
- 4) Immune for LET £ 120 MeV/mg/cm².

*Input rise and fall times <5 ns

Radiation Hardness Assurance

BAE SYSTEMS provides a superior quality level of radiation hardness assurance for our products. The excellent product quality is sustained via the use of our qualified QML operation which requires process control with statistical process control, radiation hardness assurance procedures and a rigid computer controlled manufacturing operation monitoring and tracking system.

The BAE SYSTEMS technology is built with resistance to radiation effects. Our product is designed to exhibit < 1e⁻¹¹ fails/bit-day in a 90% worst case geosynchronous orbit under worst case operating conditions. Total dose hardness is assured by irradiating test structures on every lot and total dose exposure with Cobalt 60 testing performed quarterly on TCI lots to assure the product is meeting the QML radiation hardness requirements.

Screening Levels

BAE SYSTEMS has two QML screen levels (Q and V) to meet full compliant space applications. For limited performance and evaluation situations, BAE SYSTEMS offers an engineering screen level.

Reliability

BAE SYSTEMS' reliability starts with an overall product assurance system that utilizes a quality system involving all employees including operators, process engineers and product assurance personnel. An extensive wafer lot acceptance methodology, using in-line electrical data as well as physical data, assures product quality prior to assembly. A continuous reliability monitoring program evaluates every lot at the wafer level, utilizing test structures as well as product testing. Test structures are placed on every wafer, allowing correlation and checks within-wafer, wafer-to-wafer, and from lot-to-lot.

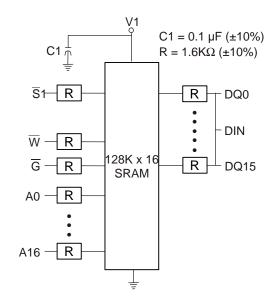
Reliability attributes of the CMOS process are characterized by testing both irradiated and non-irradiated test structures. The evaluations allow design model and process changes to be incorporated for specific failure mechanisms, i.e., hot carriers, electromigration, and time dependent dielectric breakdown. These enhancements to the operation create a more reliable product.

The process reliability is further enhanced by accelerated dynamic life tests of both irradiated and non-irradiated test structures. Screening and testing procedures from the customer are followed to qualify the product.

A final periodic verification of the quality and reliability of the product is validated by a TCI (Technology Conformance Inspection).

Flour	QML	Level	Comments
Flow	Q	V	Comments
Wafer Lot Acceptance	Χ	Х	Alternate Method Used
Serialization	Χ	X	Die Traceability
Destructive Bond Pull	Sample	Sample	
Internal Visual	Χ	Х	MIL-STD-883, TM 2010
Temperature Cycle	Χ	Х	
Constant Acceleration	Х	Х	
PIND	Χ	Х	
Radiography		Х	
Electrical Test	Χ	Х	
Dynamic Burn-In	Χ	Х	
Electrical Test		Х	
Static Burn-In		Х	3.46 V, 125°C, 144 Hours
Final Electrical	Χ	Х	Meets Group A
PDA	Х	Х	< 5% Fallout
Fine and Gross Leak	Χ	X	
External Visual	X	Х	MIL-STD-883, TM 2009

Burn-In Circuit


Stress Methodology

There are two methods of burn-in defined. For "Static" burn-in, all possible addresses are written with a logic "1" for half of the burn-in duration and a logic "0" for the remaining half. For "Dynamic" burn-in, all possible addresses are written with alternating high and low data.

All I/O pins specified in the static and dynamic burn-in pin lists are driven through individual series resistors (1.6K Ω ±10%). The burn-in circuit diagram is shown at right.

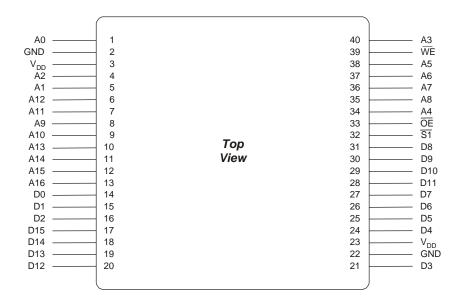
Voltage Levels

- Vin(0): 0.0 V to + 0.4 V
 - V_{IL} = Low level for all programmed signals
- •Vin(1): + 3.3 V to + 3.7 V
 - V_{IH} = High level for all programmed signals
- V1: + 3.45 V (-0% / +10%)
 - All V_{DD} pins are tied to this level
- •Vsx: Float or GND
 - All GND pins are tied to this level

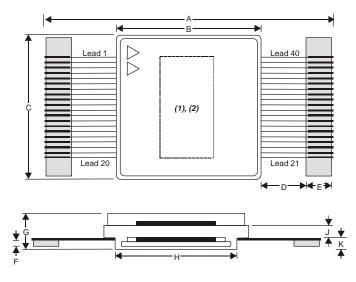
Innut

Signal

Pin Listing The dynamic burn-in pin listing is shown at right. F = square wave, 100 KHz to 1.0 MHz.


						прис	Signal
Input	Signal	Input	Signal	Input	Signal	A15	F/65536
A0	F/2	A5	F/64	A10	F/2048	A16	F/131072
A1	F/4	A6	F/128	A11	F/4096	W	F/262144
A2	F/8	A7	F/256	A12	F/8192	D _{IN}	F/524288
А3	F/16	A8	F/512	A13	F/16384	<u>5</u> 1	F/1048578
A4	F/32	A9	F/1024	A14	F/32768	G	V _{IL}

Packaging

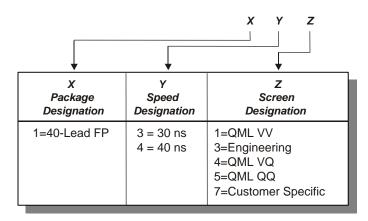

The 128K x 16 SRAM is offered in a custom 40-lead dual FP. All packages are constructed of multilayer ceramic (Al_2O_3) and feature internal power and ground planes.

Optional capacitors can be mounted to the package to maximize supply noise decoupling and increase board packing density. These capacitors attach directly to the internal package power and ground planes. This design minimizes resistance and inductance of the bond wire and package, both of which are critical in a transient radiation environment. All NC pins must be connected to either $V_{\rm DD}$, GND or an active driver to prevent charge build up in the radiation environment. (NC = no connect.)

40-Lead Dual Flat Pack Pinout

40-Lead Dual Flat Pack

A=1.635	F=.030
B=.885 ± .008	G=.164
2 .000 = .000	•
C=.710 ± .010	H=.775
D=.245 ± .015	J=.048
E=.135	K=.045


Notes:

- 1) Part mark per device specification.
- 2) "QML" may not be required per device specification.
- 3) Dimensions are in inches.
- 4) Lead width: .008 ± .002.
- 5) Lead height: $.006 \pm .002$.
- 6) Unless otherwise specified, all tolerances are ± .005".

BAE SYSTEMS

Ordering Information

128K x 16 CMOS Memory Device - MCM (3.3 V)
•Part Number 209A542

BAE SYSTEMS reserves the right to make changes to any products herein to improve reliability, function or design. BAE SYSTEMS does not assume liability arising out of the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

Cleared for Public Domain Release ©2001 BAE SYSTEMS, All Rights Reserved BAE SYSTEMS
An ISO 9001, AS9000, ISO 14001,
and SEI CMM Level 4 Company
9300 Wellington Road, Manassas, VA 20110-4122
866-530-8104
http://www.iews.na.baesystems.com/space/

0036_128K_16_SRAM.ppt