Simple Switcher (1A Step-
 Down Voltage Regulator)

Description

The MIK2575 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving 1A load with excellent line and load regulation. Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation and a fixed-frequency oscillator. The MIK2575 series offers a high-efficiency replacement for popular three-terminal linear regulators. It substantially reduces the size of the heat sink, and in some cases no heat sink is required. Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10 \%$ on the oscillator frequency The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, and adjustable output versions
- Adjustable version output voltage range, 1.23 V to $37 \mathrm{~V} \pm 4 \%$ max over line and load conditions
- Guaranteed 1A output current
- Wide input voltage range
- Requires only 4 external components
- 52 kHz fixed frequency oscillator
- TTL shutdown capability, low power standby mode
- Uses readily available standard inductors
- Thermal shutdown and current limit protection

Applications

- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to negative converter (Buck-Boost)

Note: Pin numbers are for the TO-220 package.
Block Diagram

Note: Pin numbers are for the TO-220 package.

Simple Switcher (1A StepDown Voltage Regulator)

Absolute Maximum Ratings (unless othemise noted)

Parameter	Maximum	Units	
Maximum Supply Voltage	45		
ON/OFF Pin Input Voltage	$-0.3 \mathrm{~V} \leq \mathrm{V} \leq+\mathrm{V}_{\mathbb{I}}$	V	
Input Voltage to Ground	-1	V	
Power Dissipation	Internally Limited	V	
Storage Temperature Range	-65 to +150	$\mathrm{~W}^{\circ} \mathrm{C}$	
Maximum Junction Temperature	150	${ }^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 10 Seconds)	260	${ }^{\circ} \mathrm{C}$	

Operating Ratings

Parameter	Units	
Temperature Range	$-40 \leq \mathrm{T}_{\mathrm{J}} \leq+125$	${ }^{\circ} \mathrm{C}$
Supply Voltage	40	V

Electrical Characteristics

($\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, unless otherwise noted) Note 1

Electrical Characteristics

($\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, unless otherwise noted) Note 1

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{I}_{\text {fb }}$	Feedback Bias Current	V out $=5 \mathrm{~V}$ (Adjustable Version Only)			50	$\begin{aligned} & 100 \\ & 500 \end{aligned}$	nA
F_{0}	Oscillator Frequency	(Note 6)	*	$\begin{aligned} & \hline 47 \\ & 42 \end{aligned}$	52	$\begin{aligned} & \hline 58 \\ & 63 \end{aligned}$	kHz
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	$\mathrm{I}_{\text {OUT }}=1 \mathrm{~A}($ Note 2)			0.9	$\begin{aligned} & 1.2 \\ & 1.4 \end{aligned}$	V
T_{DC}	Max Duty Cycle (ON)	(Note 3)		93	98		\%
$\mathrm{ICL}^{\text {c }}$	Current Limit	Peak Current (Notes 2, 6)	*	$\begin{aligned} & 1.7 \\ & 1.3 \\ & \hline \end{aligned}$	2.2	$\begin{aligned} & 3.0 \\ & 3.2 \end{aligned}$	A
IoL	Output Leakage Current	(Notes 4, 5): \quadOutput $=0 \mathrm{~V}$ Output $=0 \mathrm{~V}$ Output $=-1 \mathrm{~V}$			7.5	$\begin{gathered} 2 \\ 30 \end{gathered}$	mA
I_{0}	Quiescent Current	(Note 4)			5	10	mA
$\mathrm{I}_{\text {StBY }}$	Standby Quiescent Current				50	200	$\mu \mathrm{A}$
$\overline{\text { ON/OFF CONTROL }}$							
V_{IH}	$\overline{\text { ON/OFF Pin }}$ Logic Input Level	$\mathrm{V}_{\text {OUt }}=0 \mathrm{~V}$	*	$\begin{aligned} & 2.2 \\ & 2.4 \\ & \hline \end{aligned}$	1.4		V
$\mathrm{V}_{\text {IL }}$		$\mathrm{V}_{\text {OUt }}=$ Nominal Output Voltage	*		1.2	$\begin{aligned} & 1.0 \\ & 0.8 \end{aligned}$	V
I_{H}	$\overline{\mathrm{ON}}$ /OFF Pin Input Current				12	30	$\mu \mathrm{A}$
IL		$\overline{\mathrm{ON} / \text { OFF Pin }}=0 \mathrm{~V}(\mathrm{ON})$			0	10	$\mu \mathrm{A}$

The * denotes the specifications which apply over the full operating temperature range.
Note 1:External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system perfomance.
All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face).
Note 2: Output (pin 2) sourcing current. No diode, inductor or capacitor connected to output pin.
Note 3: Feedback (pin 4) removed from output and connected to 0 V
Note 4: Feedback (pin 4) removed from output and connected to +12 V for the Adjustable, 3.3 V , and 5 V , versions, and +25 V for the 12 V and 15 V versions, to force the output transistor OFF.
Note 5: $\mathrm{V}_{\mathrm{IN}}=40 \mathrm{~V}$.
Note 6: The oscillator frequency reduces to approximately 18 kHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage. This self protections feature lowers the average power dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%.

Replacement of
LM2575 Series

MIK2575 Series
October 2001 - revised July 2002

Test Circuit and Layout Guidelines

Fixed Output Voltage Versions (Figure 1a)

$\mathrm{C}_{\mathrm{IN}}-330 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic
D1 - Schottky, 11DQ06
L1 - 330 $\mu \mathrm{H}$, PE-52627
R1-2k, 0.1\%
R2-6.12k, 0.1\%
Adjustable Output Voltage Version (Figure 1a)

$V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R 1}{R 2}\right)$
R2 $=R 1\left(\frac{V_{\text {OUT }}}{V_{\text {REF }}}-1\right)$
$\mathrm{V}_{\text {REF }}=1.23 \mathrm{~V}$, R1 between 1 k and 5 k

Pad location MIK2575

Chip Size $3.95 \times 2.65 \mathrm{~mm}$
Pad Location Coordinates (the center of pads)

\mathbf{N}	Pad size $(\mu \mathrm{m})$	Coordinates $(\mu \mathrm{m})$	
		X	Y
1	190×190	220.5	1640
1	190×190	1244	1900
2	190×500	985.5	619.5
3	190×190	1893.5	2399
3	190×190	2935	2403
3	190×190	3716.5	603.5
4	190×190	3716.5	254
5	190×190	3716.5	2399

