

Standard 1T-SRAM® Embedded Memory Macro

M1T2HT18PZ32E

• High Performance 1T-SRAM Standard Macro

- 200 MHz operation
- 1-Clock cycle time
- · Pipelined read access timing
- Late-late write mode timing
- 32-Bit wide data buses
- Byte Write Enables
- Simple standard SRAM interface
- Fast delivery

• Ultra-Dense Memory

- 7.2mm² size per macro instance
- Redundancy & fuses included in macro area

Silicon-Proven 1T-SRAM Technology

- Qualification programs completed
- Products in volume production

High Yield and Reliability

Built-in redundancy for enhanced yield

• Standard Logic Process

- TSMC 0.18µm CL018G process
- Logic design rules
- Uses 4 metal layers
- Routing over macro possible in layers 5+

Power

- Single voltage 1.8V Supply
- Low power consumption

General Description

The M1T2HT18PL32E is a 2Mbit (2,169,152 bits), high speed, embedded 1T-SRAM macro. The M1T2HT18PL32E is organized as 64K(65,536) words of 32 bits. The macro employs a pipelined read timing interface with late-late write timing. Write control over individual bytes in the input data is achieved through the use of the byte write enable (bweb) input signals. The M1T2HT18PL32E macro is implemented using MoSys 1T -SRAM technology, resulting in extremely high density and performance.

Standard 1T-SRAM® Embedded Memory Macro

M1T2HT18PZ32E

Memory Interface Signal List

Signal Name	Valid	Logic	Direction	Description	
adr[15:0]	Positive clk edge	Positive	Input	Memory address	
bweb[3:0]	Positive clk edge	Negative	Input	Memory byte write enables	
				bweb[n] = 0 enables data write	
				bweb[n] = 1 disables data write	
				bweb[3] controls writing of din[31:24]	
				bweb[2] controls writing of din[23:16]	
				bweb[1] controls writing of din[15:8]	
				bweb[0] controls writing of din[7:0]	
rdb	Positive clk edge	Negative	Input	Memory read	
wrb	Positive clk edge	Negative	Input	Memory write	
din[31:0]	Positive clk edge	Positive	Input	Memory data in bus	
dout[31:0]	Positive clk edge	Positive	Output	Memory data out bus	
rstb	Positive clk edge	Negative	Input	Memory initialization reset	
clk	Clock	Positive	Input	Memory Clock	
mvddcore				Memory core supply voltage	
mvsscore				Memory core ground	
mvdd				Memory interface supply voltage	
mvss				Memory interface ground	

Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Max	Units
V _{DD}	Supply Voltage Range (1.8V ±10%)	Operating	1.62	1.98	V
TJ	Junction Temperature	Nominal V _{DD}	0	125	°C
tCYC	Cycle Time	Operating	5.0	33*	ns
tCKH	Clock High	Operating	0.45*tCYC	0.55*tCYC	ns
tCKL	Clock Low	Operating	0.45*tCYC	0.55*tCYC	ns

^{*}Note: Minimum clock frequency limit adjustable to meet system timing requirements

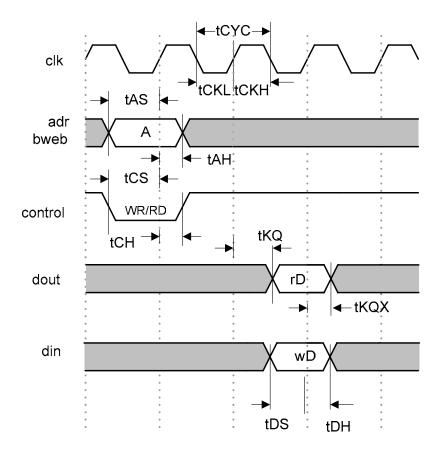
Power Requirements

Symbol	Condition	Current per Instance	Units
I _{DD1}	Operating current, V_{DD} =1.8V, clock frequency = 100MHz, output not loaded, memory accessed every clock	0.85	mA/MHz
I _{DD2}	Standby current, V _{DD} =1.8V, clock frequency =100MHz, memory not accessed	0.35	mA/MHz

Input Loading

Symbol	Condition	Load Capacitance	Units
C _{DIN}	din signal input loading	0.1	pF
C _{ADR}	adr signal input loading	0.1	pF
C _{CTL} rdb, wrb and bweb signal input loading		0.1	pF
C _{CLK}	clk signal input loading	1.0	pF

Standard 1T-SRAM[®] Embedded Memory Macro

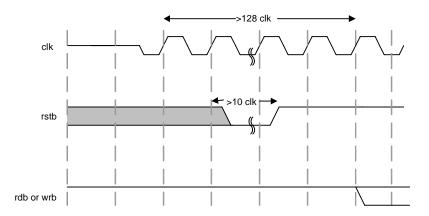

M1T2HT18PZ32E

AC Timing Characteristics at Recommended Operating Conditions

All times in nanoseconds

Bolded numbers reflect worst case design parameters

Parameter	Description	Condition	Slow	Typical	Fast
tAS	Address Setup	Min.	1.0	0.8	0.6
tAH	Address Hold	Min.	0.5	0.4	0.3
tCS	Control Setup	Min.	1.0	0.8	0.6
tCH	Control Hold	Min.	0.5	0.4	0.3
tDS	Write Data Setup	Min.	1.0	0.8	0.6
tDH	Write Data Hold	Min.	0.5	0.4	0.3
tKQ	Clock to Data Valid	Max.	3.3	2.9	2.5
tKQE	Data valid extrinsic delay per pF	Max.	0.8	0.6	0.4
tKQX	Clock to Data not valid	Min.	0.8	0.6	0.4


General AC Timing

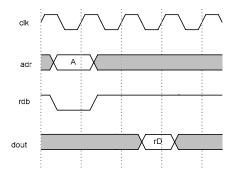
Standard 1T-SRAM® Embedded Memory Macro

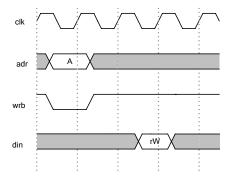
M1T2HT18PZ32E

Memory macro implements a synchronous reset to force state machines into a known state after power-up. This reset does not clear the memory contents. The clock must be running for at least two cycles before the Reset (rstb) signal will be correctly sampled as shown above. The Reset (rstb) signal must be active for at least ten (10) clock periods to initialize all internal circuitry. Independent of the Reset (rstb) signal, after power has stabilized to a voltage within the operating specification and the clock is operating within its timing specifications, there must be at least 128 clock cycles before any read or write access.

Initialization Timing

Standard 1T-SRAM® Embedded Memory Macro

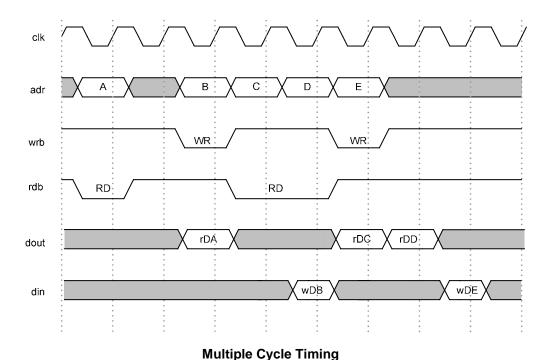

M1T2HT18PZ32E


OPERATION TRUTH TABLE

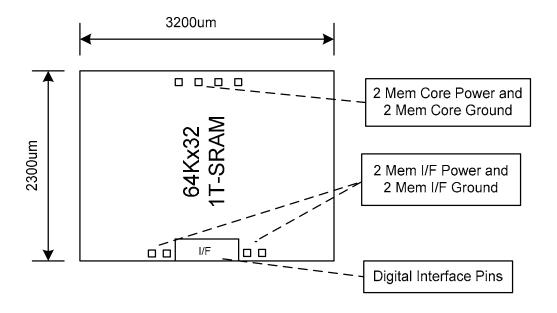
rdb	wrb	Operation
0	0	Illegal
0	1	Read
1	0	Write
1	1	Nop

FUNCTIONAL OPERATION

Address and command clocked in by rising clock edge. Read data transfer occurs in the clock cycle following the next clock rising edge. Write data transfer occurs in the following clock cycle. This standard macro uses user-managed refresh hiding. Consult factory for options.


Single Cycle Read Timing

Single Cycle Write Timing



Standard 1T-SRAM[®] Embedded Memory Macro

M1T2HT18PZ32E

MEMORY BLOCK ESTIMATES*

*Note: Approximate dimensions. Exact dimensions appear on place and route phantom

Physical Layout