Document Title

Multi-Chip Package Memory

32M Bit (2Mx16 bit) Uni-Transistor RAM / 16M(1Mx16 bit) Full CMOS SRAM

Revision History

Revision No.	History	Draft Date	<u>Remark</u>
0.0	Initial Draft - Design target	March 13, 2001	Preliminary
0.1	 Revise Released twc for continuous write operation from 100ns to 110ns. Released tcw for continuous write operation from 90ns to 100ns. Released taw for continuous write operation from 90ns to 100ns. Released tBW for continuous write operation from 90ns to 100ns. Released tWP for continuous write operation from 90ns to 100ns. 	April 3, 2001	Preliminary
0.2	Revise - Improved standby current for UtRAM from 250uA to 150uA - Added product list	June 6, 2001	Preliminary
1.0	Finalize - Added 70ns product for SRAM - Improved standby current for SRAM from 40uA to 20uA - Released deep power down suspend time from 1us to 0.5us	July 12, 2001	Final

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

Multi-Chip Package Memory

32M Bit (2Mx16 bit) Uni-Transistor RAM / 16M(1Mx16 bit) Full CMOS SRAM

FEATURES

- Power Supply voltage : 2.7~3.3 V
- Organization
- UtRAM: 2M x 16 bit
- SRAM : 1M x 16 bit
- Access Time : UtRAM 100ns, SRAM 70/100ns
- Power Consumption (typical value)
 UtRAM Standby Current : 120μA Operating Current : 18mA
- SRAM Standby Current : 1µA
 - Operating Current : 25 mA
- SRAM Data Retention : 1.5 V (min.)
- UtRAM Deep Power Down: Memory cell data hold invalid
- Three State Outputs
- Extended Temperature : -25°C ~ 85°C
- Package : 69-TBGA-9.0x12.5

BALL CONFIGURATION

GENERAL DESCRIPTION

The K5S3216Y0M is a Multi Chip Package Memory which combines 32Mbit Uni-Transistor RAM and 16Mbit full CMOS SRAM.

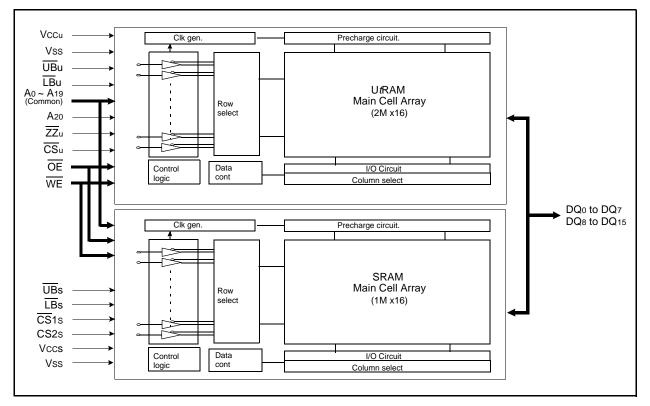
The 32Mbit Uni-Transistor RAM is organized as 2M x16 bit and the 16Mbit SRAM is organized as 1M x16 bit.

The 32Mbit Uni-Transistor RAM supports deep power down mode for low standby current.

The 16Mbit SRAM supports low data retention voltage for battery backup operation with low data retention current.

4 5 1 2 3 6 7 8 9 10 NC А NC NC NC LBs LBu В A7 WE UBs UB С A6 sz A19 D ZΖι A20 A9 וואם NC Е NC DNI F NC DQ NC A0 A16 G CS OF 000 DQ3 DQ4 DQ13 (DQ15 DNU н vcc VCCs DQ12 /SS DQ 0010 DQ J DQ2 DQ1 DNL DQ5 DQ1 NC NC Κ NC NC

69-TBGA Top View (Ball Down)


BALL DESCRIPTION

Ball Name	Description
A0 ~ A19	Address Input (Common)
A20	Address Input (U <i>t</i> RAM)
DQ0 ~ DQ15	Data Input/Output (Common)
Vccs	Power Supply (SRAM)
Vccu	Power Supply (UtRAM)
Vss	Ground (Common)
CS1s	Chip Enable (SRAM)
CS2s	Chip Enable (SRAM)
CSu	Chip Enable (UtRAM)
ZZu	Deep Power Down (U <i>t</i> RAM)
UBs	Upper Byte Enable (SRAM)
LBs	Lower Byte Enable (SRAM)
UBu	Upper Byte Enable (U <i>t</i> RAM)
LBu	Lower Byte Enable (U <i>t</i> RAM)
WE	Write Enable (Common)
OE	Output Enable (Common)
DNU	Do Not Use(Reserved for future use)
NC	No Connection (Dummy Ball)

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

Figure 1. FUNCTIONAL BLOCK DIAGRAM

PRODUCT LIST

Extended Temperature Products(-25~85°C)								
Part Name Function								
K5S3216Y0M-T010 K5S3216Y0M-T070	69-TBGA with 69 ball, UtRAM100ns, SRAM 100ns, 3.0V 69-TBGA with 69 ball, UtRAM100ns, SRAM 70ns, 3.0V							

ABSOLUTE MAXIMUM RATINGS¹⁾

ltem	Symbol	Ratings	Unit
Voltage on any pin relative to Vss	Vin, Vout	-0.2 to Vcc+0.3V	V
Voltage on Vcc supply relative to Vss	Vcc	-0.2 to 3.6V	V
Power Dissipation	PD	1.0	W
Storage temperature	Тѕтс	-65 to 150	°C
Operating Temperature	ТА	-25 to 85	°C

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions longer than 1 seconds may affect reliability.

FUNCTIONAL DESCRIPTION for UtRAM

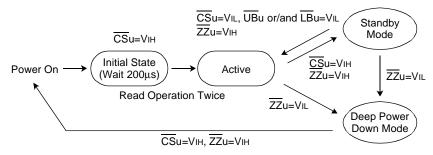
CS u	ZZ u	OE	WE	LBu	UB u	I/O 0~7	I/O 8~15	Mode	Power
Н	Н	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	Standby
X ¹⁾	L	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	Deep Power Down
L	н	X ¹⁾	X ¹⁾	н	Н	High-Z	High-Z	Deselected	Standby
L	Н	Н	Н	L	X ¹⁾	High-Z	High-Z	Output Disabled	Active
L	Н	Н	Н	X ¹⁾	L	High-Z	High-Z	Output Disabled	Active
L	Н	L	Н	L	Н	Dout	High-Z	Lower Byte Read	Active
L	Н	L	Н	н	L	High-Z	Dout	Upper Byte Read	Active
L	Н	L	Н	L	L	Dout	Dout	Word Read	Active
L	Н	X ¹⁾	L	L	Н	Din	High-Z	Lower Byte Write	Active
L	Н	X ¹⁾	L	н	L	High-Z	Din	Upper Byte Write	Active
L	Н	X ¹⁾	L	L	L	Din	Din	Word Write	Active

1. X means don't care.(Must be low or high state)

FUNCTIONAL DESCRIPTION for SRAM

CS ₁ s	CS ₂ s	OE	WE	LBs	UBs	I/O0~7	I/O 8~15	Mode	Power
н	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	Standby
X ¹⁾	L	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	Standby
X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	Н	Н	High-Z	High-Z	Deselected	Standby
L	Н	Н	Н	L	X ¹⁾	High-Z	High-Z	Output Disabled	Active
L	Н	Н	Н	X ¹⁾	L	High-Z	High-Z	Output Disabled	Active
L	Н	L	Н	L	Н	Dout	High-Z	Lower Byte Read	Active
L	Н	L	Н	Н	L	High-Z	Dout	Upper Byte Read	Active
L	н	L	Н	L	L	Dout	Dout	Word Read	Active
L	Н	X ¹⁾	L	L	Н	Din	High-Z	Lower Byte Write	Active
L	Н	X ¹⁾	L	Н	L	High-Z	Din	Upper Byte Write	Active
L	Н	X ¹⁾	L	L	L	Din	Din	Word Write	Active

1. X means don't care. (Must be low or high state)


POWER UP SEQUENCE for UtRAM

1. Apply power.

2. Maintain stable power(Vcc min.=2.7V) for a minium 200 μ s with \overline{CSu} =high.

3. Issue read operation at least twice.

STANDBY MODE STATE MACHINES for UtRAM

RECOMMENDED DC OPERATING CONDITIONS¹⁾

ltem	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	2.7	3.0	3.3	V
Ground	Vss	0	0	0	V
Input high voltage	VIH	2.2	-	Vcc+0.22)	V
Input low voltage	VIL	-0.2 ³⁾	-	0.6	V

1. TA=-25 to 85°C, otherwise specified.

Overshoot: Vcc+1.0V in case of pulse width ≤20ns.
 Undershoot: -1.0V in case of pulse width ≤20ns.
 Overshoot and undershoot are sampled, not 100% tested.

CAPACITANCE¹⁾(f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	VIN=0V	-	18	pF
Input/Output capacitance	Сю	Vio=0V	-	25	pF

1. Capacitance is sampled, not 100% tested.

DC AND OPERATING CHARACTERISTICS

ltem	Item	Symbol	Test Conditions	Min	Typ ¹⁾	Max	Unit
	Input leakage current	L	VIN=Vss to Vcc	-2	-	2	μΑ
Item Common UtRAM SRAM	Output leakage current	Ilo	\overline{CS} =VIH, \overline{ZZ} =VIH, \overline{OE} =VIH or \overline{WE} =VIL, VIO=Vss to Vcc	-2	-	2	μΑ
	Output low voltage	Vol	IoL=2.1mA	-	-	0.4	V
	Output high voltage	Vон	Іон=-1.0mA	2.4	-	-	V
	Average operating current	Icc1u	Cycle time=1µs, 100% duty, lio=0mA, CS≤0.2V, ZZ≥Vcc-0.2V, Vi№0.2V or Vi№2Vcc-0.2V	-	2	5	mA
U <i>t</i> RAM	Average operating current	Icc2u	Cycle time=100ns, lio=0mA, 100% duty, CS=Vi∟, ZZ=ViH, ViN=Vi∟ or ViH	-	18	25	mA
U <i>t</i> RAM	Standby Current(CMOS)	ISB1U	CS≥Vcc-0.2V, ZZ≥Vcc-0.2V, Other inputs=Vss to Vcc	-	120	150	μΑ
	Deep Power Down	Isbdu	ZZ≤0.2V, Other inputs=Vss to Vcc	-	5	20	μΑ
	Average operating current	ICC1S	Cycle time=1μs, 100%duty, lιο=0mA, CS1≤0.2V, LB≤0.2V or/and UB≤0.2V, CS2≥Vcc-0.2V, VIN≤0.2V or VIN≥Vcc-0.2V	-	-	4	mA
		ICC2S	Cycle time=100ns, lio=0mA, 100% duty, CS1=ViL, CS2=ViH, LB=ViL or/and UB=ViL, ViN=ViL or ViH	-	-	35	mA
SRAM	Standby Current (CMOS)	ISB1S	Other input =0~Vcc 1) $\underline{CS}_1 \ge Vcc-0.2V$, $CS_2 \ge Vcc-0.2V$ (\overline{CS}_1 controlled) or 2) $\underline{0V} \le \underline{CS}_2 \le 0.2V$ (CS_2 controlled) or 3) $\underline{LB} = \underline{UB} \ge Vcc-0.2V$, $CS_2 \ge Vcc-0.2V$ ($\overline{LB}/\overline{UB}$ controlled)	-	1.0	20	μΑ

1. Typical values are tested at Vcc=3.0V, TA= $25^{\circ}C$ and not guaranteed.

STANDBY MODE CHARACTERISTIC for UtRAM

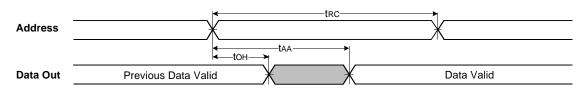
Power Mode	Memory Cell Data	Standby Current(mA)	Wait Time(ms)		
Standby	Valid	150	0		
Deep Power Down	Invaild	20	200		

AC OPERATING CONDITIONS

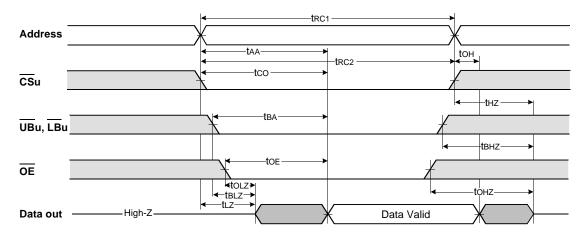
TEST CONDITIONS(Test Load and Test Input/Output Reference) Input pulse level: 0.4 to 2.2V Input rising and falling time: 5ns Input and output reference voltage: 1.5V Output load: CL=50pF

AC CHARACTERISTICS(Vcc=2.7~3.3V, TA=-25 to 85°C)

						Speed	l Bins				
	Parameter List	Symbol		U <i>t</i> R	AM			SR	AM		Units
			100	ns ¹⁾	100	ns ²⁾	70ns		10	Ons	onits
			Min	Мах	Min	Max	Min	Max	Min	Max	
	Read Cycle Time	tRC	100	-	100	-	70	-	100	-	ns
	Address Access Time	taa	-	100	-	100	-	70	-	100	ns
	Chip Select to Output	tco	-	100	-	100	-	70	-	100	ns
	Output Enable to Valid Output	tOE	-	50	-	50	-	35	-	50	ns
	UB, LB Access Time	tва	-	100	-	100	-	70	-	100	ns
Read	Chip Select to Low-Z Output	t∟z	10	-	10	-	10	-	10	-	ns
Roud	UB, LB Enable to Low-Z Output	tBLZ	10	-	10	-	10	-	10	-	ns
	Output Enable to Low-Z Output	tOLZ	5	-	5	-	5	-	5	-	ns
	Chip Disable to High-Z Output	tHZ	0	25	0	25	0	25	0	25	ns
	UB, LB Disable to High-Z Output	tвнz	0	25	0	25	0	25	0	25	ns
	Output Disable to High-Z Output	tonz	0	25	0	25	0	25	0	25	ns
	Output Hold from Address Change	tон	5	-	5	-	5	-	5	-	ns
	Write Cycle Time	twc	100	-	110	-	70	-	100	-	ns
	Chip Select to End of Write	tcw	80	-	100	-	60	-	80	-	ns
	Address Set-up Time	tAS	0	-	0	-	0	-	0	-	ns
	Address Valid to End of Write	tAW	80	-	100	-	60	-	80	-	ns
	UB, LB Valid to End of Write	tBW	80	-	100	-	60	-	80	-	ns
Write	Write Pulse Width	twp	70	-	100	-	55	-	70	-	ns
	Write Recovery Time	twR	0	-	0	-	0	-	0	-	ns
	Write to Output High-Z	twnz	0	30	0	30	0	25	0	30	ns
	Data to Write Time Overlap	tDW	40	-	40	-	30	-	40	-	ns
	Data Hold from Write Time	tDH	0	-	0	-	0	-	0	-	ns
	End Write to Output Low-Z	tow	5	-	5	-	5	-	5	-	ns


1. The characteristics which is restricted for continuous write operation over 20 times, please refer to technical note.

2. The characteristics for continuous write operation.

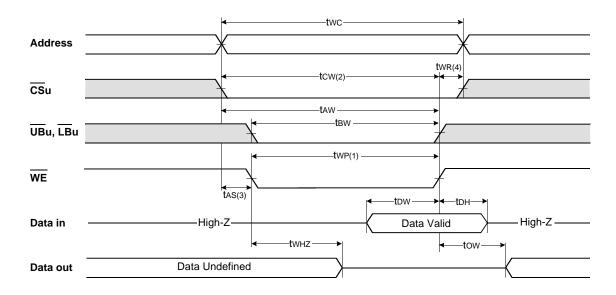


TIMING DIAGRAMS for UtRAM

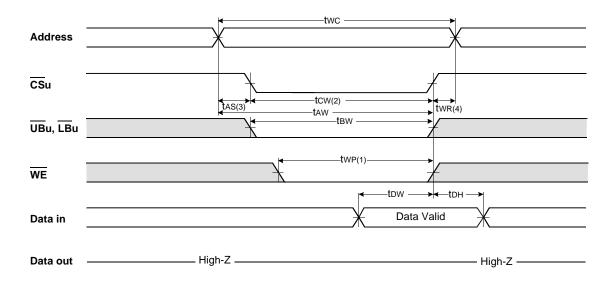
TIMING WAVEFORM OF READ CYCLE(1)(Address Controlled, CSu=OE=VIL, ZZu=WE=VIH, UBu or/and LBu=VIL)

TIMING WAVEFORM OF READ CYCLE(2)(ZZU=WE=VIH)

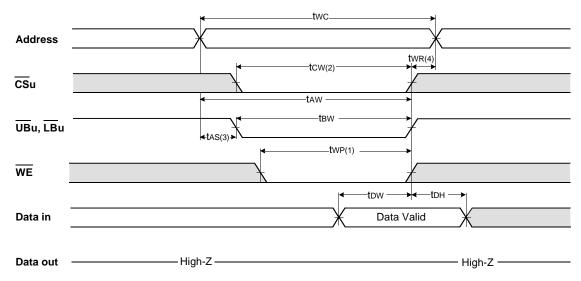
(READ CYCLE)


1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.

2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.


3. The minimum read cycle(tRC) is determined later one of the tRC1 and tRC2.

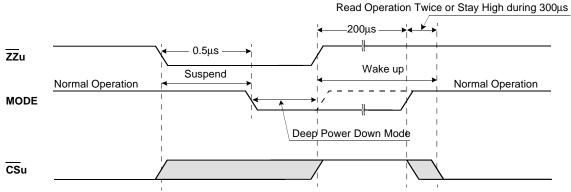
TIMING WAVEFORM OF WRITE CYCLE(1)(WE Controlled, ZZu=VIH)



TIMING WAVEFORM OF WRITE CYCLE(2)(CSu Controlled, ZZu=VIH)

TIMING WAVEFORM OF WRITE CYCLE(3)(UBu, LBu Controlled, ZZu=VIH)

(WRITE CYCLE)

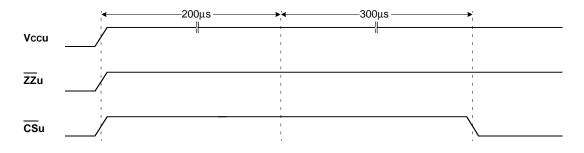

1. <u>A write occurs during the overlap(twp) of low CSu and low WE. A write begins when CSu goes low and WE goes low with asserting UBu or LBu for single byte operation or simultaneously asserting UBu and LBu for double byte operation. A write ends at the earliest</u> transition when CSu goes high and WE goes high. The twp is measured from the beginning of write to the end of write.

2. tcw is measured from the \overline{CSu} going low to the end of write.

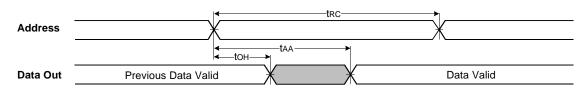
3. tas is measured from the address valid to the beginning of write.

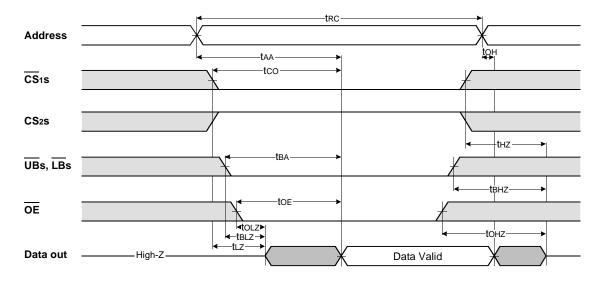

4. twe is measured from the end of write to the address change. twe applied in case a write ends as CSu or WE going high.

TIMING WAVEFORM OF DEEP POWER DOWN MODE for UtRAM



TIMING WAVEFORM OF POWER UP(1) for UtRAM

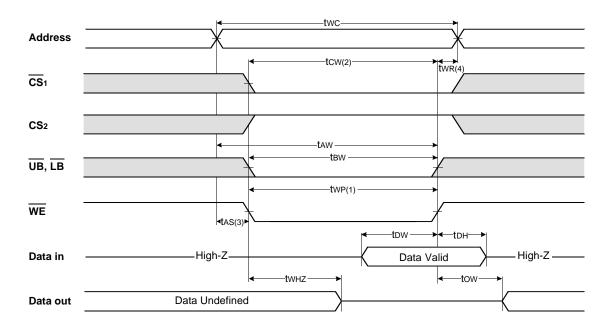

TIMING WAVEFORM OF POWER UP(2)(No Dummy Cycle) for UtRAM



TIMING DIAGRAMS for SRAM

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, CS1s=OE=VIL, CS2s=WE=VIH, UBs or/and LBs=VIL)

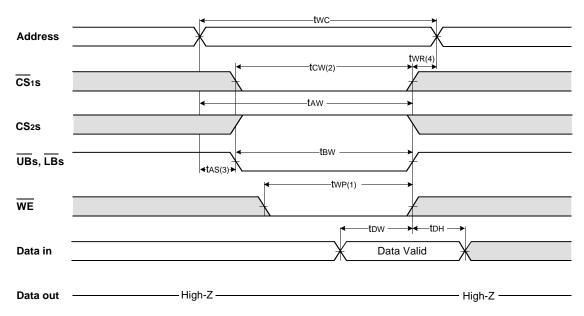
TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)



NOTES (READ CYCLE)

- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)



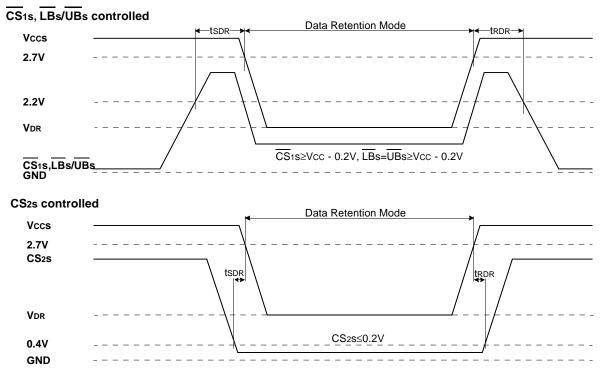
TIMING WAVEFORM OF WRITE CYCLE(2) (CS1s Controlled)

TIMING WAVEFORM OF WRITE CYCLE(3) (UBs, LBs Controlled)

NOTES (WRITE CYCLE)

- 1. <u>A write occ</u>urs during the overlap(twp) of low CS1s and low WE. A write begins when CS1s goes low and WE goes low with asserting UBs or LBs for single byte operation or simultaneously asserting UBs and LBs for double byte operation. A write ends at the earliest transition when CS1s goes high and WE goes high. The twp is measured from the beginning of write to the end of write. 2. tcw is measured from the CS1s going low to the end of write.
- 3. tas is measured from the address valid to the beginning of write.
- 4. twr is measured from the end of write to the address change. twr applied in case a write ends as CS1s or WE going high.

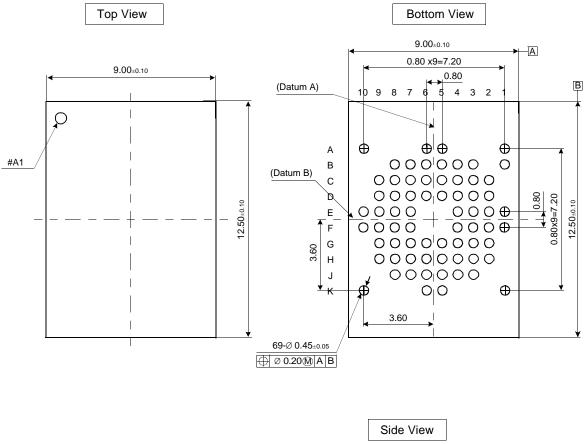
DATA RETENTION CHARACTERISTICS for SRAM

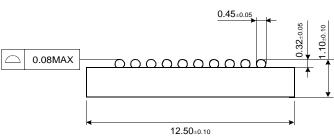

Item	Symbol	Test Condition	Min	Тур	Max	Unit
Vcc for data retention	VDR	CS1s≥Vcc-0.2V ¹⁾ , VIN≥0V	1.5	-	3.3	V
Data retention current	IDR	Vcc=1.5V, CS1s≥Vcc-0.2V ¹), VIN≥0V	-	1.0 ²⁾	15	μΑ
Data retention set-up time	tSDR	See data retention waveform	0	-	-	ns
Recovery time	tRDR		tRC	-	-	115

1. 1) $\overline{CS}_{1S} \ge Vcc-0.2V$, $CS_{2S} \ge Vcc-0.2V(\overline{CS}_{1S} \text{ controlled})$ or

2) 0≤CS2s≤0.2V(CS2s controlled) or

3) $LBs=UBs\geq$ Vcc-0.2V, CS₂s \geq Vcc-0.2V(LBs/UBs controlled) 2. Typical value are measured at T_A=25°C and not 100% tested.


DATA RETENTION WAVE FORM for SRAM



PACKAGE DIMENSION

69 TAPE BALL GRID ARRAY(0.80mm ball pitch)

TNAL0001 U*t*RAM USAGE AND TIMING

TECHNICAL NOTE

UtRAM USAGE AND TIMING

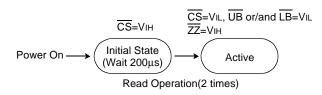
INTRODUCTION

UtRAM is based on single-transistor DRAM cells. As with any other DRAM, the data in these cells must be periodically refreshed to prevent data loss. What makes the UtRAM unique is that it offers a true SRAM style interface that hides all refresh operations from the memory controller.

START WITH A DRAM TECHNOLOGY

The key to the UtRAM is its high speed and low power. This speed comes from the use of many small blocks, often just 32Kbits each, to create UtRAM arrays. The small blocks have short word lines with little capacitance, eliminating a major source of operating current in conventional DRAM blocks. Each independent macro-cell on a UtRAM device consists of a

number of these blocks. Each chip has one or more macro.


The address decoding logic is also fast. UtRAM perform a complete read operation in every tRC, but UtRAM needs power up sequence like a DRAM.

Power Up Sequence and Diagram

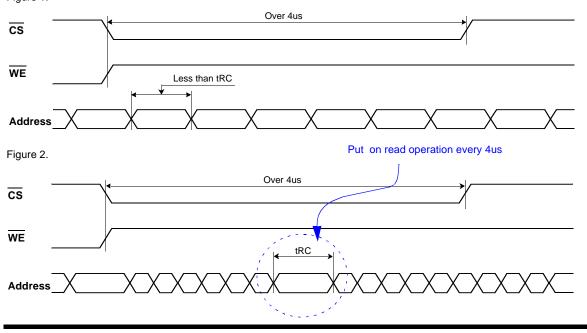
1. Apply power.

2. Maintain stable power for a minium 200 μ s with \overline{CS} =high.

3. Issue read operation at least 2 times.

DESIGN ACHIEVES SRAM SPECIFIC OPERATIONS

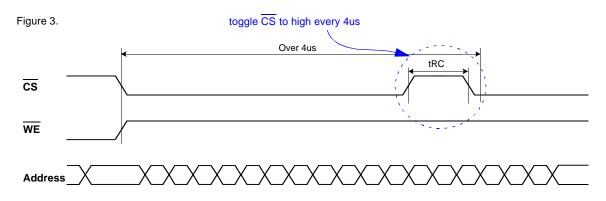
The U*t*RAM design works just like an SRAM, with no wait states or other overhead for precharging or refreshing its internal DRAM cells. SAMSUNG Electronics(SAMSUNG) hides these operations with advanced design. Precharging takes place during every access, overlapped with the end of the cycle and the decoding portion of the next cycle.


Hiding refresh is more difficult, Every row in every block must be refreshed at least once during the refresh interval to prevent data loss. SAMSUNG provides a internal refresh controller for devices. When all accesses during a refresh interval are directed to one macro-cell, as can happen in signal processing applications, a more sophisticated approach is required to hide refresh. The pseudo SRAM, sometimes used on these applications, which is required a memory controller that can hold off accesses when a refresh operation is needed. SAMSUNG unique qualitative advantage over these parts(in addition to quantitative improvements in access speed and power consumption) is that the UtRAM never needs to hold off accesses, and indeed it has no hold off signal. The circuitry that gives SAMSUNG this advantage is fairly simple but has not previously been disclosed.

AVOID TIMING

Following figures show you a abonormal timing which is not supported on U*t*RAM and their solution.

At read operation, if your system have a timing which sustain invalid states over 4us at read mode like Figure 1. There are some guide line for proper operation of UtRAM.


When your system have multiple invalid address signal shorter than tRC on the timing which showed in Figure 1, UtRAM need a normal read timing during that cycle(Figure 2) or toggle the CS to high'about tRC(Figure 3).

SRAM/NVM PLANNING YOON-000831 SAMSUNG Electronics CO., LTD. reserves the right to change products or specifications without notice. ©2000 SAMSUNG Electronics CO., LTD.

Figure 1.

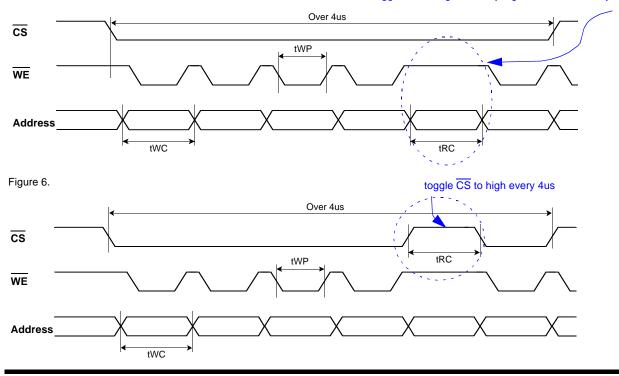

Write operation have similar restricted operation with Read. If your system have a timing which sustain invalid states over 4us at write mode and system have continuous write signal with Min. tWC over 4us like Figure 4. <u>You</u> must put read timing on the cycle(Figure 5) or toggle the $\overline{\text{CS}}$ to high about tRC(Figure 6).

Figure 4.

Figure 5.

toggle $\overline{\text{WE}}$ to high and stay high at least tRC every 4us

SRAM/NVM PLANNING YOON-000831 SAMSUNG Electronics CO., LTD. reserves the right to change products or specifications without notice. ©2000 SAMSUNG Electronics CO., LTD.