Contents

Features	1
Block Diagram	2
Pin Description	3
Pad Assignment	5
Pad Coordinates	6
Function Explanation	7
Instruction Explanation	17
Instruction List	27
Operation Description	29
Examples of Connection to LCD Panel	35
Examples of LCD Drive Output Waveform	37
External BiasResistor vs LCD Drive Waveform	38
Absolute Maximum Ratings	39
DC Characteristics	39
Current Consumption Measurement Examples	43
Timing Characteristics	44
Examples Application Circuit	47

LCD Controller-Driver

S-4561A

The S-4561A is a 17-common x 60-segment output character LCD controller-driver with built-in serial and parallel interfaces. The S-4561A incorporates CGROM, making character display possible. Independently of the CPU, display on the LCD panel is executed via the internal oscillating circuit or clock input. The S-4561A has a wide variety of command instructions which minimize the load of the CPU. It also features a wide voltage range, low power consumption, and it is provided with a power save function, making the S-4561A a suitable display device for applications in portable electronics.

Features

- Display Area
 - 5-dot font
 - 12-column x 2-line (+4 columns)
 - 24-column x 1-line (+8 columns)

6-dot font

- 10-column x 2-line (+6 columns)
- 20-column x 1-line (+12 columns)
- Values in parentheses indicate the number of columns outside the display area.
- Icon Display
 - 60 icons (max.)
 - Icons can be displayed on the upper and lower panel.
 - Fonts: 5-dot display mode and 6-dot display mode
- Interface
 - 4-bit, 8-bit high-speed parallel interface (80-/68-Family CPU) Serial interface
- Driver Output
 - 60 segments
 - 16 commons+ Icon common :
- Character Generator ROM (CGROM)
 - 9600 bits, 5×8 bits character font, 240 characters
- Character Generator RAM (CGRAM)
 - 8 character x 5 x 8=320 bits
- Display Data RAM (DDRAM)
 - 2 lines x 16 characters=2 x 16 x 8=256 bits
 - (4 characters are displayed outside the display area)
- Display Clock
 - Either internal CR oscillating circuit or external clock input : CR oscillation: 34 kHz
 - (Frame Frequency=76.9 Hz)

- Duty Cycle: 1/17
- Internal LCD Drive Bias Voltage Generator
 Internal Bias Resistor :

Command selection 1/5 or 1/4 bias External Bias Resistor :

Free setting of 1/2 bias or more

Normal Instructions

Display Clear, Cursor Home, Display ON/OFF, Display Character Blink, Cursor Shift, Display Shift, Cursor ON/OFF

- Extended Instructions
 - Contrast Adjustment, Smooth Scroll Control, Icon Control, Icon Blink, Bias Resistor Select, Change of Number of Display Columns, Power Save, Icon Only Display, Booster Drive Frequency Select
- Reset Circuit : Hardware Reset
- Internal Booster : Dual Booster
- Power Supply Voltage Range
 - Logic Power: 2.4 V to 5.5 V
 - LCD Drive Power: 2.7 V to 6.5 V

Low Current Consumption : Approx. 0 µA (during power save operation)

- Delivered on gold bump bare chips,
- Notice that isolation of the IC from light exposure is not taken into account for this IC design.
 Be sure to take measures not to expose light to the surface, back, or side of the IC in order to prevent this IC from malfunctioning.

Block Diagram

1. Block Overview

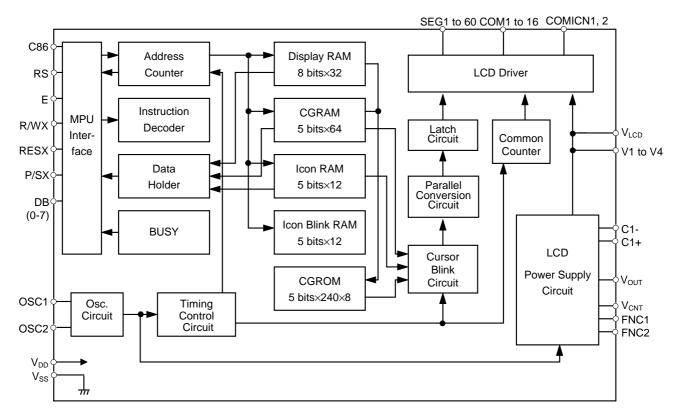


Figure 1 Block Diagram

- V_{OUT} V_{CNT} С $\mathsf{V}_{\mathsf{D}\mathsf{D}}$ Ô V_{LCD} C1+ LCD Bias V_1 Voltage Regulator/ Resistor/ C1- V_2 Booster LCD Voltage Voltage Follower V_3 Command ጎ V_4 Standard Voltage Circuit FNC1 FNC2 V_{SS} CR Oscillating MPU Interface Circuit OSC1 OSC2
- 2. LCD Power Supply Circuit

Figure 2 LCD Power Supply Circuit

Seiko Instruments Inc.

Pin Description

1. Logic Power Supply Pins

Table 1 Logic Power Supply Pins					
Pin No.	Pin Name	Description			
47	V _{SS}	Negative Power Pin: Usually connected to 0 V (GND)			
33	V _{DD}	Positive Power Pin: Usually connected to+3 V			

2. Control Pins

	Table 2 Control Pins					
Pin No.	Pin Name	Description				
7, 9 11, 13 15, 17 19, 21	DB0 to DB7	 When an 8-bit parallel interface is selected: 8-Bit Parallel Data Bus 3-State Input/Output Pin When a 4-bit parallel interface is selected: DB0 to DB3 : Open DB4 to DB7 : 4-Bit Parallel Data Bus 3-State Input/Output Pins When a serial interface is selected: DB0 : Serial Data Input Pin DB1 : Clock Input Pin DB2 to DB7 : Open 				
25	R/WX	 When a 4-bit/8-bit parallel interface is selected: 68-Family MPU Read/Write Signal Input Pin R/WX="H": Read R/WX="L": Write 80-Family MPU: Write Signal Input Pin Active "L" Data Bus Input State When a serial interface is selected: High Impedance 				
27	P/SX	Parallel/Serial Interface Changeover Pin P/SX="H" : 4-Bit/8-Bit Parallel Interface P/SX="L" : Serial Interface				
29	RS	 When 4-bit/8-bit parallel interface is selected: Register Select Signal Input Pin RS="0" : Instruction Register Write Each Address Counter Read BUSY Flag Read RS="1" : Data Register Write/Read When a serial interface is selected: RS="0" : Instruction Register Write RS="1" : Data Register Write 				
31	E	 When a 4-bit/8-it parallel interface is selected: 68-Family MPU Enable Clock Signal Input Pin Active "H" 80-Family MPU Read Signal Input Pin Active "L" Data Bus Output State When a serial interface is selected: Chip-Select Input Pin E= "L": Active 				
23	RESX	Reset Input Pin Active "L" Internal Pullup Register				
39	C86	 When 4-bit/8-bit parallel interface is selected: C86="H"				

3. CR Oscillating Circuit Input/Output Pins

	Table 3 CR Oscillating Circuit Input/Output Pins						
Pin No.	Pin Name	Description					
5	OSC2	CR Oscillating Circuit Output Pin: Connects oscillating resistor Rf; while an external clock is being used, "Open."					
3	OSC1	CR Oscillating Circuit Input Pin: Connects oscillating resistor Rf; An external clock can be input.					

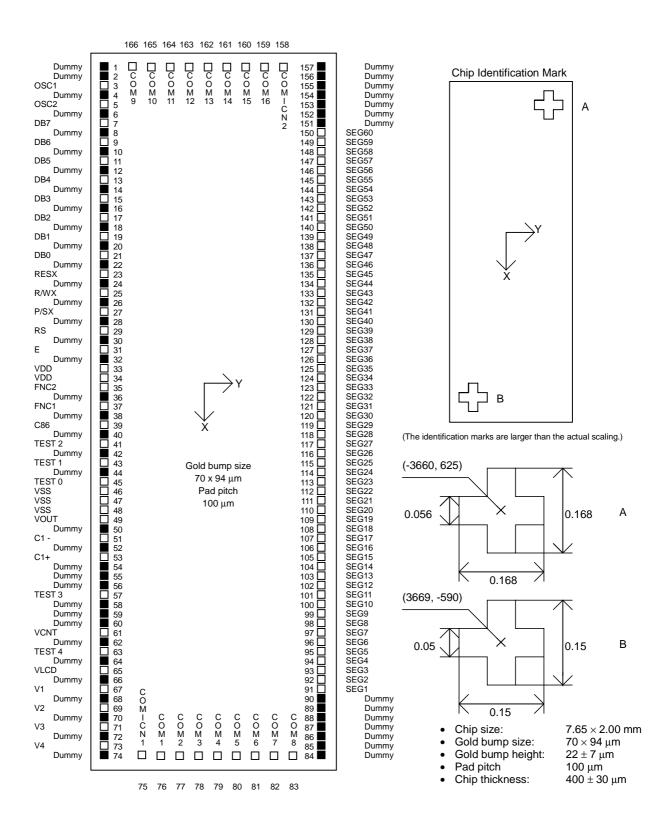
4. LCD Drive Voltage Pins

Table 4	LCD	Drive	Voltage	Pins
---------	-----	-------	---------	------

Pin No.	Pin Name	Description					
35	FNC2	LCD Power Circuit Operation Control Pin 2					
37	FNC1	LCD Power Circuit Operation Control Pin 1					
49	VOUT	Booster Drive Voltage Output Pin					
51	C1-	1st Boosting Negative Side Connection Pin					
53	C1+	1st Boosting Positive Side Connection Pin					
59	VCNT	LCD Power Supply Voltage Control Pin					
65	V _{LCD}	LCD Drive Voltage Input/Output Pin					
67	V1	LCD Drive Bias Voltage Pin While an internal LCD power supply circuit is being used, outputs the LCD drive bias voltage.					
69	V2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
71	V3	$\begin{array}{ccc} V3 & 2/4 \times V_{LCD} & 2/5 \times V_{LCD} \\ V4 & 1/4 \times V_{LCD} & 1/5 \times V_{LCD} \\ While an external LCD power supply circuit is being used, inputs the LCD drive bias voltage. \\ \end{array}$					
73	V4	$V_{LCD} \ge V1$, V2, V3, V4 $\ge VSS$ $V_{LCD} \ge V_{DD}$					

5. Driver Output Pins

Table 5 Driver Output Pins


Pin No.	Pin Name	Description
91 to 150	SEG1 to SEG60	Segment Drive Output Pins
76 to 83 159 to 166	COM1 to COM16	Common Drive Output Pins
75	COMICN1	Common Drive Output Pins for Icon
158	COMICN2	COMICN1 and 2 output the same phase waveform.

6. Other Pins

Table 6 Logic Power Supply Pins

Pin No.	Pin Name	Description			
—	Dummy	Dummy Pin Insulated from the inside of the IC.			
45	TEST0	Pins for IC delivery inspection:			
43	TEST1	Cannot be wired to the outside.			
41	TEST2	When in actual use, "Open."			
57	TEST3				
63	TEST4				

Pad Assignment

Pad Coordinates

No.	Symbol	Х	Y	No.	Symbol	Х	Y	No.	Symbol	Х	Y
1	Dummy	-3700.5	-863.5	57	TEST3	1950	-863.5	113	SEG23	750	863.5
2	Dummy	-3550	-863.5	58	Dummy	2050	-863.5	114	SEG24	650	863.5
3	OSC1	-3450	-863.5	59	Dummy	2150	-863.5	115	SEG25	550	863.5
4	Dummy	-3350	-863.5	60	Dummy	2250	-863.5	116	SEG26	450	863.5
5	OSC2	-3250	-863.5	61	VCNT	2350	-863.5	117	SEG27	350	863.5
6	Dummy	-3150	-863.5	62	Dummy	2450	-863.5	118	SEG28	250	863.5
7	DB7	-3050	-863.5	63	TEST4	2550	-863.5	119	SEG29	150	863.5
8	Dummy	-2950	-863.5	64	Dummy	2650	-863.5	120	SEG30	50	863.5
9	DB6	-2850	-863.5	65	VLCD	2750	-863.5	121	SEG31	-50	863.5
10	Dummy	-2750	-863.5	66	Dummy	2850	-863.5	122	SEG32	-150	863.5
11	DB5	-2650	-863.5	67	V1	2950	-863.5	123	SEG33	-250	863.5
12	Dummy	-2550	-863.5	68	Dummy	3050	-863.5	124	SEG34	-350	863.5
13	DB4	-2450	-863.5	69	V2	3150	-863.5	125	SEG35	-450	863.5
14	Dummy	-2350	-863.5	70	Dummy	3250	-863.5	126	SEG36	-550	863.5
15	DB3	-2250	-863.5	71	V3	3350	-863.5	127	SEG37	-650	863.5
16	Dummy	-2150	-863.5	72	Dummy	3450	-863.5	128	SEG38	-750	863.5
17	DB2	-2050	-863.5	73	V4	3550	-863.5	129	SEG39	-850	863.5
18	Dummy	-1950	-863.5	74	Dummy	3700.5	-863.5	130	SEG40	-950	863.5
19	DB1	-1850	-863.5	75	COMICN1	3688.5	-400	131	SEG41	-1050	863.5
20	Dummy	-1750	-863.5	76	COM1	3688.5	-300	132	SEG42	-1150	863.5
21	DB0	-1650	-863.5	77	COM2	3688.5	-200	133	SEG43	-1250	863.5
22	Dummy	-1550	-863.5	78	COM3	3688.5	-100	134	SEG44	-1350	863.5
23	RESX	-1450	-863.5	79	COM4	3688.5	0	135	SEG45	-1450	863.5
24	Dummy	-1350	-863.5	80	COM5	3688.5	100	136	SEG46	-1550	863.5
25	R/WX	-1250	-863.5	81	COM6	3688.5	200	137	SEG47	-1650	863.5
26	Dummy	-1150	-863.5	82	COM7	3688.5	300	138	SEG48	-1750	863.5
27	P/SX	-1050	-863.5	83	COM8	3688.5	400	139	SEG49	-1850	863.5
28	Dummy	-950	-863.5	84	Dummy	3700.5	863.5	140	SEG50	-1950	863.5
29	RS	-850	-863.5	85	Dummy	3550	863.5	141	SEG51	-2050	863.5
30	Dummy	-750	-863.5	86	Dummy	3450	863.5	142	SEG52	-2150	863.5
31	E	-650	-863.5	87	Dummy	3350	863.5	143	SEG53	-2250	863.5
32	Dummy	-550	-863.5	88	Dummy	3250	863.5	144	SEG54	-2350	863.5
33	VDD	-450	-863.5	89	Dummy	3150	863.5	145	SEG55	-2450	863.5
34	VDD	-350	-863.5	90	Dummy	3050	863.5	146	SEG56	-2550	863.5
35	FNC2	-250	-863.5	91	SEG1	2950	863.5	147	SEG57	-2650	863.5
36	Dummy	-150	-863.5	92	SEG2	2850	863.5	148	SEG58	-2750	863.5
37	FNC1	-50	-863.5	93	SEG3	2750	863.5	149	SEG59	-2850	863.5
38	Dummy	50	-863.5	94	SEG4	2650	863.5	150	SEG60	-2950	863.5
39	C86	150	-863.5	95	SEG5	2550	863.5	151	Dummy	-3050	863.5
40	Dummy	250	-863.5	96	SEG6	2450	863.5	152	Dummy	-3150	863.5
41	TEST2	350	-863.5	97	SEG7	2350	863.5	153	Dummy	-3250	863.5
42	Dummy	450	-863.5	98	SEG8	2250	863.5	154	Dummy	-3350	863.5
43	TEST1	550	-863.5	99	SEG9	2150	863.5	155	Dummy	-3450	863.5
44	Dummy	650	-863.5	100	SEG10	2050	863.5	156	Dummy	-3550	863.5
45	TEST0	750	-863.5	101	SEG11	1950	863.5	157	Dummy	-3700.5	863.5
46	VSS	850	-863.5	102	SEG12	1850	863.5	158	COMICN2	-3688.5	400
47	VSS	950	-863.5	103	SEG13	1750	863.5	159	COM16	-3688.5	300
48	VSS	1050	-863.5	104	SEG14	1650	863.5	160	COM15	-3688.5	200
49	VOUT	1150	-863.5	105	SEG15	1550	863.5	161	COM14	-3688.5	100
50	Dummy	1250	-863.5	106	SEG16	1450	863.5	162	COM13	-3688.5	0
51	C1-	1350	-863.5	107	SEG17	1350	863.5	163	COM12	-3688.5	-100
52	Dummy	1450	-863.5	108	SEG18	1250	863.5	164	COM11	-3688.5	-200
53	C1+	1550	-863.5	109	SEG19	1150	863.5	165	COM10	-3688.5	-300
54	Dummy	1650	-863.5	110	SEG20	1050	863.5	166	COM9	-3688.5	-400
55	Dummy	1750	-863.5	111	SEG21	950	863.5				
56	Dummy	1850	-863.5	112	SEG22	850	863.5				

	Tuble of only identification mark ocordinates						
Chip Identification	X-Coordinates	Y-Coordinates					
Mark							
А	- 3660	625					
В	3669	- 590					

Table 8 Chip Identification Mark Coordinates

■ Function Explanation

1. Interface

Serial and parallel interfaces are built in. Either one can be selected by changing over the P/SX terminal. The parallel interface can respond to both 4- and 8-bit parallel data transmission. Namely, data is transmitted once in the 8-bit interface or twice in the 4-bit interface. The CPU interfaces with respective instruction codes and several kinds of data via the instruction decoder and the data holder.

Data is read from each memory via the data holder. Through the ADDRESS SETTING Command, the contents of the memory are read once into the data holder, and are output through the next READ command. Then, the next data is read into the data holder.

Parallel and serial interfaces execute and finish all instructions within the Enable or Clock cycle specified in accordance with timing characteristics. Because the "BUSY" state is cleared within the cycle time, instructions can be executed in succession without confirming the "BUSY."

1.1 Parallel Interface

The parallel interface is engaged when the P/SX terminal is "H." Connect and fix the P/SX terminal to VDD.

Pin Name	C86=0: 80-Family MPU	C86=1: 68-Family MPU
RS	RS	RS
E	RD	E
R/WX	WR	R/WX
DB(7:0)	DB(7:0)	DB(7:0)

Table 9 Interface

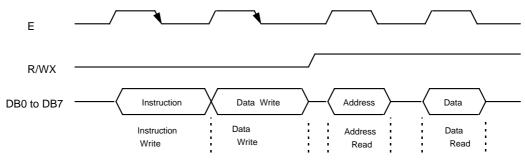
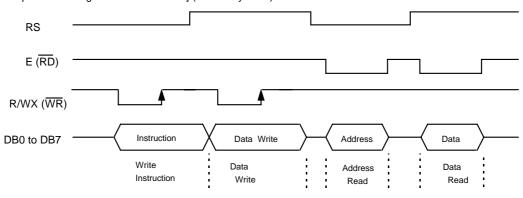
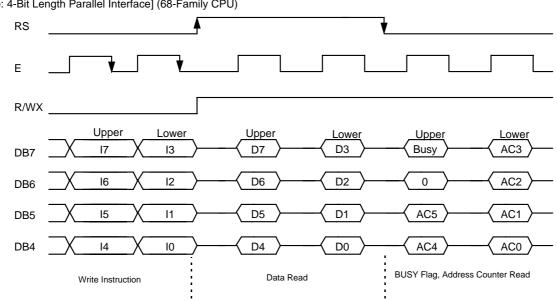
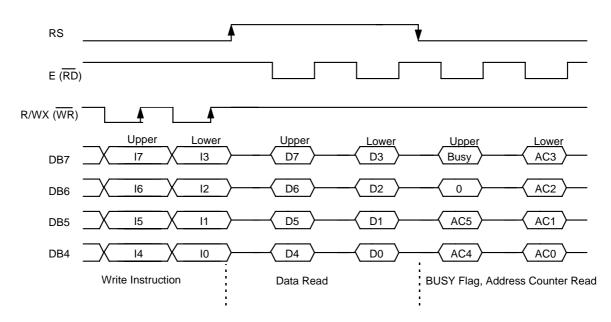


Figure 3 8-Bit Length Parallel Interface (68-Family CPU)

[Example: 8-Bit Length Parallel Interface] (80-Family CPU)


Figure 4 8-Bit Length Parallel Interface (80-Family CPU) Seiko Instruments Inc.

[Example: 4-Bit Length Parallel Interface] (68-Family CPU)

Figure 5 4-Bit Length Parallel Interface (68-Family CPU)



- Remarks: In case of a 4-bit length interface, data is transmitted through the four buses DB4 to DB7 (buses DB0 to DB3 are not used. Set DB0 to DB3 "Open").
 - The data transmission to the CPU is completed by transmitting 4-bit data twice. The data transmission is executed in the order from upper 4 bits to lower 4 bits. The upper 4 bits of data immediately after the output level of the RS pin changes are transmitted. Leave the RS pin unchanged until lower bits finish the data transmission.

1.2 Serial Interface

Serial interface is engaged when the P/SX terminal is "L." The instruction code is read at the rising edge of the serial clock (SCLK). Serial data is input in numerical order from DB0 to DB7. The instruction code is the same as that for the parallel data. Connect and fix the P/SX terminal to VSS. Connect pins DB2 through DB7, R/WX, and C86 to "OPEN."

Taking into consideration external or reflective noises, optimize the serial clock wiring. Always check operations after mounting the IC on your device.

2. Busy

When the BUSY flag points "1," it shows that an instruction is being executed. The BUSY flag is read to DB7 by the ADDRESS READ command. In case of commands other than the RESET or the DISPLAY CLEAR, there is no need for confirming the BUSY flag. This is because that the instruction is completed within the cycle time specified in accordance with the timing characteristics. After confirming that BUSY flag points "0" during RESET or DISPLAY CLEAR operation or after the specified wait time, write the next command. When the BUSY flag points "1," any command other than the ADDRESS READ cannot be accepted.

When a serial interface is selected, the BUSY READ is not available.

Н

Н

3. Address Counter

The Address Counter (AC) gives respective addresses for DDRAM, CGRAM, ICONRAM or ICON BLINK RAM according to the contents of the AC. Only one RAM among the four kinds of RAMs is selected by the RAM ADDRESS SETTING command. After the ADDRESS SETTING command is executed, the display data can be read and written in the selected RAM. The contents of the RAM AC, where the ADDRESS READ command, is also selected are read. Increment and decrement of the AC are automatically executed after the READ or WRITE command is executed. Once an address is set, READ and WRITE commands can be input in succession.

4. Display Data RAM (DDRAM)

The display data RAM (DDRAM) holds the display data as an 8-bit character code. The DDRAM responds to 32 characters 00H to 1EH and has a capacity of 32×8=256 bits. When any character code is written in the DDRAM, a character which corresponds to the character code appears on the LCD panel. As the figure shows, the DDRAM is provided with a non-displayed character area as well as a normally-displayed character area. The non-displayed character area is shifted to the display area by the DISPLAY SHIFT or SMOOTH SCROLL command.

Addresses in the DDRAM are assigned to 5 bits DB0 to DB4 by the DDRAM ADDRESS SETTING command. The 8-bit character code corresponds to characters stored in the CGROM.

	DB4	DB3	DB2	DB1	DB0
Address Counter	AC4	AC3	AC2	AC1	AC0
Example of (1D)H	1	1	1	0	1

Table 11	Display	Data
----------	---------	------

5. Character Generator ROM (CGROM)

The character generator ROM (CGROM) generates 5 x 8-dot character patterns from the 8-bit character code. The CGROM holds 9600 bits which correspond to 240 character character patterns. Character codes of the Character Code List are assigned from "0001 0000" to "1111 1111."

6. Character Generator RAM (CGRAM)

The character generator RAM (CGRAM) holds character patterns of 5×8 dots per character, in which users can freely write. The CGRAM holds 8 characters×5×8 dots=320 bits.

The character patterns are written for every 5 bits DB0 to DB4 by setting the address by the CGRAM ADDRESS SETTING command. The CGRAM address consists of upper 3 bits and lower 3 bits.

The written character patterns are assigned as the 8-bit character code from "0000 *000" to "0000 *111" (* : don't care) of the CGRAM. The upper 3 bits of the CGRAM address corresponds to the lower 3 bits of the character code, and also corresponds to the far-left character code in the "Character Code List." The contents written in the CGRAM are displayed when the respective character codes are written in the DDRAM.

7. Icon Display RAM (ICONRAM)

The icon display RAM (ICONRAM) stores data being lit on the icon display. The ICONRAM holds 60 bits corresponding to 60 marks. Data is output to SEG1 to 60 in accordance with LCD drive outputs COMICN1 and 2. To light the icon, write "1" in the ICONRAM. With data being lit on the icon display, write it using 5 bits DB0 to DB4 after executing the ICONRAM ADDRESS SETTING command. For example, to light the icon at SEG31, input icon lighting data "***1 0000" after setting the ICONRAM address to "0110."

8. Icon Display Blink RAM (ICON BLINK RAM)

The icon display blink RAM (ICON BLINK RAM) stores individual icons with respect to their necessity of blinking. The ICON BLINK RAM holds 60 bits the same as the ICON RAM, and its bit map corresponding to the segment drive output is in accordance with the ICONRAM. For example, to blink the icon corresponding to SEG31, input the icon blink data "***1 0000" after setting the ICON BLINK RAM address to "0110." However, it is necessary to write "1" in the ICONRAM in advance.

[1-line x 24-character display]

Set to the 1-line x 24-character display mode.

 Without Display Shift Display Locations 1 st line 	COM1 to COM8	COM9 to COM16 13 14 15 16 17 18 19 20 21 22 23 24 CCDD0E 0F 10 11 12 13 14 15 16 17	Non-Displayed Character 18191A1B1C1D1E1F	DDRAM Address
 Display Left Shift Display Locations 1 st line 	1 2 3 4 5 6 7 8 9 10 11 12 01 02 03 04 05 06 07 08 09 0A 0B 0C	13 14 15 16 17 18 19 20 21 22 23 24 0D0E0F101112131415161718	Non-Displayed Character	DDRAM Address
 Display Right Shift Display Locations 1 st line 	1 2 3 4 5 6 7 8 9 10 11 12 1F000102030405060708090A	13 14 15 16 17 18 19 20 21 22 23 24 08 0C 00 0E 0F 10 11 12 13 14 15 16	Non-Displayed Character	DDRAM Address

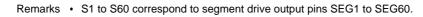
Figure 8 DDRAM Addresses and Display Locations (1-line x 24-character display)

[2-line x 12-character display]

 Without Display Shift 	COM1 to COM16
Display Locations 1 st line 2 nd line • Display Left Shift	1 2 3 4 5 6 7 8 9 10 11 12 Non-Displayed Character 000102030405060708090A0B 0C0D0E0F DDRAM 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E IF Address
Display Locations 1 st line 2 nd line • Display Right Shift	1 2 3 4 5 6 7 8 9 10 11 12 Non-Displayed Character 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0D 0D 0A 0A 0A 0B 0C 0D 0D
Display Locations 1 st line 2 nd line	1 2 3 4 5 6 7 8 9 10 11 12 Non-Displayed Character 0F000102030405060708090A 0B0C0D0E 0B0C0D0E DDRAM 1F101112131415161718191A 1B1C1D1E Address

Figure 9 DDRAM Addresses and Display Locations (2-line x 12-character display)

Character Code List Address	CGRAM Address	Write Character Patterns				
Upper Lower	$A_5 A_4 A_3 A_2 A_1 A_0$	$D_7 \ D_6 \ D_5 \ D_4 \ D_3 \ D_2 \ D_1 \ D_0$				
		* * * 0 1 1 1 0 * * * 1 0 0 0 1				
		* * * 1 0 0 0 1 * * * 1 0 0 0 0				
0 0 0 0 0 0 0 0	0 0 0 0 1 1	* * * 0 1 1 1 0				
۲ <u>––––</u> ۲	0 0 0 1 0 0	* * * 0 0 0 1				
	0 0 0 1 0 1	* * * 1 0 0 0 1				
	0 0 0 1 1 0	* * * 0 1 1 1 0				
	<u>0000</u> 111	* * * 0 0 0 0 0				
	0 0 1 0 0 0	* * * 0 1 1 1 0				
	0 0 1 0 0 1	* * * 0 0 1 0 0				
	0 0 1 0 1 0	* * * 0 0 1 0 0				
	0 0 1 0 1 1 0 0 1 1 0 0	* * * 0 0 1 0 0 * * * 0 0 1 0 0				
	0 0 1 1 0 0	* * * 0 0 1 0 0 * * * 0 0 1 0 0				
		* * * 0 1 1 1 0				
		* * * 0 0 0 0 0				
•	•	•				
•	•	•				
		* * * 0 1 1 0				
	1 1 1 0 0 1	* * * 0 0 1 0 0				
	1 1 1 0 1 0	* * * 0 0 1 0 0				
	1 1 1 0 1 1	* * * 0 0 1 0 0				
	1 1 1 1 0 0	* * * 0 0 1 0 0				
	1 1 1 1 0 1	* * * 0 0 1 0 0				
		* * * 0 1 1 1 0 * 0 0 0 0 0 0				
		* * * 0 0 0 0 0				


Table 11 Relationship between CGRAM Addresses/Character Codes and Character Patterns

Remarks • The lower 3 bits of the Character Code List correspond to the upper 3 bits (A5 A4 A3) of the CGRAM.

- The lower 3 bits (A2 A1 A0) of the CGRAM correspond to the respective lines of the character patterns.
- The 8th line of the character pattern is the cursor position. By turning the cursor display ON, thelogic sum of the cursor and the character pattern is displayed. The upper 3 bits (D7 D6 D5) are ignored.

	ICOI	NRA	M	Icon Display Data and									
	Ad	dres	s		SEG Output								
A_3	A_2	A_1	A_0	D ₇	D_6	D_5	D_4	D ₃	D_2	D_1	D_0		
0	0	0	0	*	*	*	S1	S2	S3	S4	S5		
0	0	0	1	*	*	*	S6	S7	S8	S9	S10		
0	0	1	0	*	*	*	S11	S12	S13	S14	S15		
0	0	1	1	*	*	*	S16	S17	S18	S19	S20		
0	1	0	0	*	*	*	S21	S22	S23	S24	S25		
0	1	0	1	*	*	*	S26	S27	S28	S29	S30		
0	1	1	0	*	*	*	S31	S32	S33	S34	S35		
0	1	1	1	*	*	*	S36	S37	S38	S39	S40		
1	0	0	0	*	*	*	S41	S42	S43	S44	S45		
1	0	0	1	*	*	*	S46	S47	S48	S49	S50		
1	0	1	0	*	*	*	S51	S52	S53	S54	S55		
1	0	1	1	*	*	*	S56	S57	S58	S59	S60		
1	1	0	0	*	*	*	*	*	*	*	*		
1	1	0	1	*	*	*	*	*	*	*	*		
1	1	1	0	*	*	*	*	*	*	*	*		
1	1	1	1	*	*	*	*	*	*	*	*		

Table 12 ICONRAM Address and Segment Drive Output Drive Bit Map

ICON	Blin	k RA	١M		ICO	ON B	link D	isplay	/ Data	and		
A	ddre	SS					SEG	Outp	ut			
A ₃ A	2 A		C	D7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	
0	0	0	0	*	*	*	S1	S2	S3	S4	S5	
0	0	0	1	*	*	*	S6	S7	S8	S9	S10	
0	0	1	0	*	*	*	S11	S12	S13	S14	S15	
0	0	1	1	*	*	*	S16	S17	S18	S19	S20	
0	1	0	0	*	*	*	S21	S22	S23	S24	S25	
0	1	0	1	*	*	*	S26	S27	S28	S29	S30	
0	1	1	0	*	*	*	S31	S32	S33	S34	S35	
0	1	1	1	*	*	*	S36	S37	S38	S39	S40	
1	0	0	0	*	*	*	S41	S42	S43	S44	S45	
1	0	0	1	*	*	*	S46	S47	S48	S49	S50	
1	0	1	0	*	*	*	S51	S52	S53	S54	S55	
1	0	1	1	*	*	*	S56	S57	S58	S59	S60	
1	1	0	0	*	*	*	*	*	*	*	*	
1	1	0	1	*	*	*	*	*	*	*	*	
1	1	1	0	*	*	*	*	*	*	*	*	
1	1	1	1	*	*	*	*	*	*	*	*	

Table 13 ICON BLINK RAM Address and Segment Drive Output Drive Bit Map

Remark: S1 to S60 correspond to segment drive output pins SEG1 to SEG60.

9. Cursor Blink Controller

Controls the cursor display as well as the blink display (Character Blink Display). Displays and blinks the character indicated by the DDRAM address counter. To change the cursor or blink display position, execute the DDRAM SETTING ADDRESS command or the DATA WRITE command. The cursor display and the blink display positions are not changed by executing the CGRAM, ICONRAM or ICON BLINK RAM ADDRESS command or executing data write. The cursor is displayed on the 8th line of the character font of a 5-bit length, and with the logic sum of the CGROM character patterns. The blink display comes in four types and can be set by the BLINK SELECT command. Refer to "Instruction Description" (page 25 of this specification).

10.CR Oscillating Circuit

Generates a basic clock that serves as display timing.

The oscillating frequency can be reduced to fosc=approx. 34 kHz via an oscillating resistor (Rf=500 k Ω). By inputting the external clock in OSC1, operation through the external clock is possible. In this case, set OSC2 to "Open."

Duty	Rf	fosc	Frame Frequency	Frame Frequency	fosc ——— [Hz]
1/17 Duty	500 kΩ	34 kHz	76.9 Hz		2×13×17

11.LCD Driver

Has 16 common output pins, two ICON common output pins, and 60 segment output pins for driving the LCD, and generates 2-frame AC drive waveform (type B). Two ICON common output pins, each of which is configured orgthogonally to the chip, generate the drive waveform at the same timing. The ICON display can be configured over and under the top and the bottom of the LCD panel. When the ICON display is in no use, set the icon common output pin to "Open."

12. LCD Power Supply Circuit

Consists of a doubler, an LCD voltage controller, an LCD bias resistor, and a voltage follower. The LCD voltage controller consists of a voltage regulator and an LCD voltage command fine adjustment circuit. The LCD power supply circuit can be controlled by pins FNC1 and 2 and BIAS SELECT command. For power supply, an internal type for the booster, voltage regulator and LCD voltage adjustment circuit or any external type can be switched by setting pins FNC1 or 2. All of internal LCD power supplies will be automatically turned OFF by setting FNC1 to "H", and FNC2 to "L." Because of this, the LCD bias voltage produced via the externally-divided resistor can be supplied to pins VLCD, and V1 to V4.

FI	NC 1	FNC 2	Doubler	LCD Voltage Adjustment Circuit	LCD Bias Resistor	Voltage Follower	Remarks	O: Valid × : Invalid	
	Н	Н	0	0	0	O O Use all internal LCD power supply circuits.			
	Н	L	×	×	×	\times × Use an external bias resistance.			
	L	н	×	×	×	< × Setting is not needed.			
	L	L	×	×	0	0	Externally generates and inputs VLCD.		

Table 14 LCD Power Supply Circuit

Remarks • Always connect FNC1 and 2 to VDD or VSS.

- Externally-connected pins VOUT, VLCD and V1 through V4 cannot be used as a drive power supply of other circuits.
- Connecting the power supply externally with the internal LCD power supply circuit ON may lead to a breakdown of the IC.

12.1 Doubler

Doubles the voltage through oscillating frequency of the CR Oscillating Circuit. The voltage is boosted from the V_{SS} level and output to V_{OUT} . Capacitors between C1+ and C1- as well as between V_{SS} and V_{OUT} are connected. Use the doubler in the range of $V_{DD} \leq 3.6 \text{ V}$.

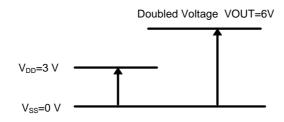


Figure 10 Example of Booster Output

12.2 LCD Voltage Adjustment Circuit

LCD drive voltage V can be adjusted by the following two voltage controllers:

Voltage Regulator

Adjusts voltage regulator output VLCD by externally- divided resistors Ra and Rb.

VLCD can be calculated as the division ratio of the internal reference voltage VREF. VREF has temperature characteristics of approx. 0.01%/ C and -0.13%/ C and the LCD temperature gradient can be compensated. VREF differs depending upon the temperature characteristics of the reference voltage to select a command.

$$V_{LCD} = \frac{Ra + Rb}{Ra} V_{REF}$$
 (V)

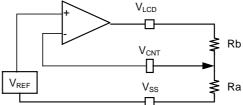


Figure 11 Example of LCD Voltage Adjustment Circuit

VLCD can be used as a "variable" by using the volume resistor as the divided resistor. Feedback voltage noises occurring at VCNT pin directly affect VLCD. Take appropriate measures against noises.

12.3 LCD Bias Resistor

The internally-divided resistor creates a bias potential for the LCD drive. Either 1/5 or 1/4 bias potential can be selected by executing a command. Because the bias potential is supplied from bias resistor via the voltage follower to the LCD driver, the bias current consumption is significantly reduced.

When setting FNC1 to "H" and FNC2 to "L," the externally-attached bias resistor can be connected directly to pins V1 through V4. The bias resistor of a 1/2 or more bias ratio can be freely supplied to the LCD driver as an LCD drive voltage. Regardless of its level, the voltage can be input to pins V1 through V4. Select an appropriate resistance value of the divided resistor in accordance with the size and the capacity of of the LCD panel. A deflection may occur in the LCD drive waveform depending upon the size and the capacity of the LCD panel. If so, adjust the value of the bias resistor or the capacitor. When the external bias is selected, the bias voltage is also supplied via the voltage follower to the LCD driver. The internal booster or the LCD voltage adjustment circuit cannot be used.

Supply VLCD via the externally-attached LCD power supply circuit.

12.4 Voltage Follower

Buffers the bias potential via the internal bias resistor and supplies it to the LCD driver.

12.5 Reference Voltage Circuit

Generates reference voltage VREF. The VREF has the following three values:

Table 15 V_{REF}

		V _F	REF		
DV1	DV0	Temperature	Reference		
		Characteristics	Voltage		
0	0	-0.13%/°C	1.7 V (Standard)		
0	1	0.01%/°C	1.7 V (Standard)		
1	*	—	V _{DD}		

Instruction Explanation

The instruction comes in two types - - namely, normal instructions and extended instructions. All instructions excluding the DISPLAY CLEAR are completed within the instruction command cycle time. Because of this, the CPU does not need for checking the BUSY flag, and instructions can be input in succession.

1. Normal Instructions

1.1 DISPLAY CLEAR

	RS	R/WX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Normal	0	0	0	0	0	0	0	0	0	1

Clears the display and initializes the state. The display of marks remains unchanged.

DDRAM	:	Writes 20H in hexadecimal scale.
DDRAM Address Counter	:	Sets address 0. Clears the DISPLAY SHIFT and returns to the default.
Entry Mode	:	Sets to ID=1 [increment]. "S" remains unchanged.
Cursor	:	The CURSOR DISPLAY position moves to the 1st line, left end. "C" remains unchanged.
Blink	:	The BLINK DISPLAY position moves to the 1st line, left end. "B" remains unchanged.
Amount of smooth scroll	:	Resets the amount of scroll.

The DISPLAY CLEAR needs the time for writing space codes in succession in all of DDRAMs. Confirm the completion of the DISPLAY CLEAR command by checking the BUSY flag. When you wait for the time expressed by equation (1) after executing the DISPLAY CLEAR command, the BUSY flag does not need to be checked (the value twice as many as the value expressed in equation (1) is recommended as the wait time).

The contents of the CGRAM, ICONRAM, and ICON BLINK RAM remain unchanged.

The DISPLAY CLEAR command is ignored during the POWER SAVE.

Remark: Always set all space codes in "20" (hexadecimal scale).

Time until DISPLAY CLEAR is completed= $\frac{35}{\text{fosc}(\text{kHz})}$ msec +++ Equation (1)

1.2 CURSOR HOME

	RS	R/WX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Normal	0	0	0	0	0	0	0	0	1	СН

Initializes the cursor position and the blink position. The contents of the CHARACTER DISPLAY and the ICON DISPLAY remain unchanged. After this instruction is executed, data is read from the CPU and written in the DDRAM.

• CH=1 (Cursor Home)

DDRAM Address Counter	: Sets the address to 0.
DISPLAY SHIFT	: Clears the amount of the DISPLAY SHIFT and returns to the initial display screen.
CURSOR	: The CURSOR DISPLAY position moves to the 1st line, left end. "C" remains
	unchanged.
BLINK	: The BLINK DISPLAY position moves to the 1st line, left end. "B" remains unchanged.
Amount of SMOOTH SCROLI	.: Resets the amount of the SCROLL and returns to the initial display screen.
CH=0 (Cursor Return)	

DDRAM Address Counter	: Sets the 1st address on the CURSOR DISPLAY line.
DISPLAY SHIFT	: Clears the amount of the DISPLAY SHIFT and returns to the initial display screen.
CURSOR	: The CURSOR DISPLAY position moves to the same line, left end. "C" remains
	unchanged.
BLINK	: The BLINK DISPLAY position moves to the 1st line, left end. "B" remains unchanged.
Amount of SMOOTH SCROL	L: Resets the amount of the SCROLL and returns to the initial display screen.

1.3 ENTRY MODE SETTING

	RS	R/WX	_DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Normal	0	0	0	0	0	0	0	1	ID	S

When data is written in and read from the DDRAM, CGRAM, ICONRAM, or the ICON BLINK RAM in accordance with the ID, set ID=1 [increment] or ID=0 [decrement] of the selected RAM address counter.

"S" determines whether or not the whole display shifts during the write in the DDRAM. The display shifts left when ID=1, and shifts right when ID=0.

Table 16 Operations of Address Counter

ID	Access from/to RAM	Operations of Address Counter			
0	DDRAM CGRAM: After write ICONRAM: After read ICON BLINK RAM	Decrements the address counter of the RAM (-1) after executing write and read.			
1	DDRAM CGRAM: After write ICONRAM: After read ICON BLINK RAM	 Increments the address counter of the RAM (+1) after executing write and read. 			

Table 17 Display Shift

Access from/to RAM	ID	S	Display Shift
	1	1	Shifts the whole display left.CURSOR and BLINK positions remain unchanged.*
Write in DDRAM		0	The display does not shift.CURSOR and BLINK positions shift right.
	0	1	Shifts the whole display right.CURSOR and BLINK positions remain unchanged.
		0	The display does not shift.CURSOR and BLINK positions shift left.
Read from DDRAM	1	-	The display does not shift.CURSOR and BLINK positions shift right.
	0	-	The display does not shift.CURSOR and BLINK positions shift left.
CGRAM Write in ICONRAM Read from ICON BLINK RAM	-	-	The display does not shift.CURSOR and BLINK positions do not shift.

Notes: -- : Don't care.

* : The display shifts. CURSOR and BLINK positions seem to be standstill on the display screen. CURSOR and BLINK displays are valid only when "1" is set to DISPLAY ON/OFF command C or B.

1.4 DISPLAY ON/OFF

	RS	R/WX	_DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	_
Normal	0	0	0	0	0	0	1	D	С	В	

"D", "C" and "B"set the DISPLAY ON/OFF, CURSOR DISPLAY ON/OFF and BLINK DISPLAY ON/OFF.

Table 18 D

D	Functions								
1	urns ON the display (display start).								
0	 Turns OFF the CHARACTER DISPLAY, MARK DISPLAY, CURSOR DISPLAY, and BLINK DISPLAY. Data of the DDRAM, CGRAM, ICONRAM, and ICON BLINK RAM remain unchanged. Displays again when turning ON the display. Remark: There is no change in the current consumption when turning OFF the display. 								

Table 19 C

С	Functions							
1	Displays the cursor at the position of the DDRAM address counter.							
0	Turns OFF the CURSOR DISPLAY. There is no change in setting values such as ID.							

Table 20 B

В	Functions
1	Continues blinking the characters at the position of the DDRAM address counter. Can set the CURSOR and BLINK at the same time. Blink Frequency= $\frac{\text{fosc}}{32768}$ [Hz]
0	Aborts the blink.

1.5 CURSOR/DISPLAY SHIFT

	RS	R/WX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	_
Normal	0	0	0	0	0	1	SC	RL	-	-	
- : Don't care											

Shifts CURSOR and BLINK positions without writing in and reading from the display data. Used for character correction and retrieval.

Data is written in and read from the CPU to the DDRAM after executing this command.

Table 21 Cursor/Display Shift

SC	RL	Functions
	_	Shifts CURSOR and BLINK positions left.
0	0	Decrements the DDRAM address counter (-1).
		Repetitious operations of the CURSOR SHIFT move the cursor to other line.
		Shifts CURSOR and BLINK positions right.
0	1	Increments the DDRAM address counter (+1).
		Repetitious operations of the CURSOR SHIFT move the cursor to other line.
		Shifts the whole display left.
1	0	Shifts CURSOR and BLINK positions left, together with characters.
'	0	There is no change in the DDRAM address counter.
		Characters do not shift to other line even when the DISPLAY SHIFT is executed in succession.
		Shifts the whole display right.
1	1	Shifts CURSOR and BLINK positions right, together with characters.
'		There is no change in the DDRAM address counter.
		Characters do not shift to other line even when the DISPLAY SHIFT is executed in succession.

1.6 FUNCTION SET

	RS	R/WX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Normal	0	0	0	0	1	DL	Ν	MS	DT	-

1.6.1 DL

Sets the length of data for parallel interface.

0: 4-bit data length interface

1: 8-bit data length interface

1.6.2 N

Sets the display screen.

N:0 Selects a 2-line x 12 column display.

N:1 Selects a 1-line x 24 column display.

1.6.3 MS

Selects the instruction table.

Table 22 MS

MS	Functions
0	Selects the Normal Instruction Table.
	Sets "0" when changing from the Extended Instruction Table.
1	Selects the Extended Instruction Table.
	Sets "1" when changing from the Normal Instruction Table.

1.6.4 DT

Table 22 DT

DT	Γ	Functions
0		5-dot display mode
1		6-dot display mode

1.7 CGRAM ADDRESS SETTING

	RS	R/WX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	_
Normal	0	0	0	1	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	

Sets binary "A5A4A3A2A1A0" to the CGRAM Address Counter.

After executing this command, data is written from the CPU and read in the CGRAM.

1.8 DDRAM ADDRESS SETTING

	RS	R/WX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Normal	0	0	1	-	-	A ₄	A ₃	A ₂	A ₁	A ₀

-: Don't care

Sets binary "A4A3A2A1A0" to the DDRAM Address Counter.

After executing this command, data is written from the CPU and read in the DDRAM.

1.9 BUSY FLAG/ADDRESS READ

	RS	R/WX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	_
Normal	0	1	BF	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	

Reads the BUSY flag and the content of "A5A4A3A2A1A0" of the Address Counter. Outputs BUSY flag BF"1" to DB7 during execution of a command. Execution of any command excluding the DISPLAY CLEAR is completed within the command cycle time. Therefore, confirmation of the BUSY flag is not needed.

The Read Address Counter reads the contents of the RAM address counter accessed just before executing this command among DDRAM, CGRAM, ICONRAM, and ICON BLINK RAM.

1.10 DATA WRITE

	RS	R/WX	_DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	_
Normal	1	0	D ₇	D ₆	D ₅	D ₄	D ₃	D_2	D ₁	D ₀	

Writes binary data "D7D6D5D4D3D2D1D0" in CGRAM, DDRAM, ICONRAM, and ICON BLINK RAM. Prior to data write, execute the desired RAM ADDRESS SETTING command to select an appropriate RAM. Addresses after write are incremented or decremented depending upon the ID value in the entry mode.

Table 24 Length of Data of Each Memory	Table 24	Length	of Data o	f Each	Memory
--	----------	--------	-----------	--------	--------

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
DDRAM	D ₇	D_6	D ₅	D_4	D_3	D ₂	D ₁	D ₀
CGRAM	*	*	*	D_4	D_3	D_2	D ₁	D ₀
ICONRAM	*	*	*	D_4	D_3	D_2	D ₁	D ₀
ICON BLINK RAM	*	*	*	D_4	D_3	D_2	D ₁	D ₀

1.11 DATA READ

	RS	R/WX	_DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Normal	1	1	D ₇	D ₆	D ₅	D ₄	D ₃	D_2	D ₁	D ₀

Reads binary "D7D6D5D4D3D2D1D0" from CGRAM, DDRAM, ICONRAM, ICON BLINK RAM. Prior to data write, execute the desired RAM ADDRESS SETTING command to select an appropriate RAM. Addresses after write are incremented or decremented depending upon the ID value in the entry mode.

2. Extended Instructions

2.1 POWER SAVE SETTING

	RS	R/WX	_DB	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Extended	0	0	0	0	0	0	-	-	-	PS	- : Don't care

PS : 1 Power Save

- Aborts the oscillating circuit and the LCD power supply circuit.
- Aborts the LCD driver. Segment, and common LCD drive outputs are fixed to VSS.
- Aborts the LCD.
- Leaves the setting of individual data, common and address in the DDRAM, CGRAM, ICONRAM, ICON BLINK RAM unchanged.

PS : 0 Cancels Power Save

In the Power Save mode, the current consumption is minimized to approximate the value during standstill. When the external power supply is used, it is necessary to stop it and go to the floating or the VSS level. Also, a switching transistor and other circuit which cut the current flowing through the external bias resistor are needed.

2.2 SELECTING ICON ONLY DISPLAY, BOOSTER DRIVE FREQUENCY

	RS	R/WX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Extended	0	0	0	0	0	1	-	MD	DC1	DC0	- : Don't care

MD : 0 Normal Display

MD : 1 Icon Only Display

DC : Booster Drive Frequency Setting

DC1	DC0		Booster Drive Frequency [kHz]
			1/17 Duty fosc=34 kHz
0	0		4.25 (1/8 osc)
0	1	Default	2.13 (1/16 osc)
1	0		1.06 (1/32 osc)
1	1		0.53 (1/64 osc)

Regardless of the contents of the DDRAM, the icon only is displayed and display screens excluding marks go out when MD=1. When setting the booster drive frequency, it is possible to minimize the current consumption by reducing the booster drive frequency in accordance with the boosting control data.

When the booster drive frequency is reduced, the contrast of the display icon differs depending upon the display panel size and the value of the capacitor for the booster. Determine the ability of the booster by experimentally optimizing the contrast of the LCD panel. In addition, take into careful consideration noises which may affect the system due to the booster drive frequency.

After resetting, the booster drive frequency is the default value.

2.3 SELECT COM/SEG OUTPUT MODE, SELECT BIAS

	RS	R/WX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Extended	0	0	0	1	0	0	MLC	MLS		BS5

The MLC determines how the common output waveform is output to COM (1-16) terminals.

MLC=0: The common output waveform is output in the order of COM1, COM2, ..., COM15, COM16.

MLC=1: The common output waveform is output in the order of COM16, COM15, ..., COM2, COM1.

The MLS determines how the segment output waveform is output to SEG (1-60) terminals.

The output form also varies depending upon N=0 or N=1.

[N=0 (2-line x 12-column) display]

- MLS=0: The segment output waveform to be displayed on the DDRAM addresses from 00 to 0B is output to terminals from SEG1 to SEG60.
 The segment output waveform to be displayed on the DDRAM addresses from 10 to 1B is output to terminals from SEG1 to SEG60.
- MLS=1: The segment output waveform to be displayed on the DDRAM addresses from 00 to 0B is output to terminals from SEG60 to SEG1. The segment output waveform to be displayed on the DDRAM addresses from 10 to 1B is output to

The segment output waveform to be displayed on the DDRAM addresses from 10 to 1B is output to terminals from SEG60 to SEG1.

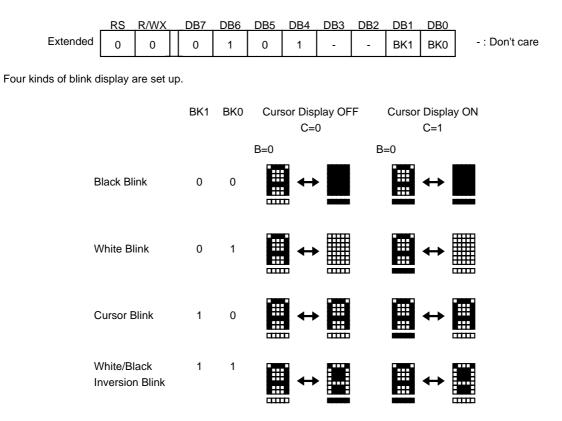
[N=1 (1-line x 24-column) display]

MLS=0: The segment output waveform to be displayed on the DDRAM addresses from 00 to 0B is output to terminals from SEG1 to SEG60.

The segment output waveform to be displayed on the DDRAM addresses from 10 to 1B is output to terminals from SEG60 to SEG1.

MLS=1: The segment output waveform to be displayed on the DDRAM addresses from 00 to 0B is output to terminals from SEG60 to SEG1.

The segment output waveform to be displayed on the DDRAM addresses from 10 to 1B is output to terminals from SEG1 to SEG60.


Both the MLC and the MLS allow viewers to see characters correctly regardless of the mounting position of the IC to the LCD panel (upper, lower, front or rear mounting position).

Determine the bias voltage for the LCD power supply circuit.

BS5	Select Bias
0	1/4 Bias
1	1/5 Bias

While the bias voltage is being externally determined, the booster, the LCD voltage adjustment circuit, the voltage follower, and the bias circuit stop.

2.4 BLINK SELECT

2.5 SMOOTH SCROLL DOT SHIFT AMOUNT SETTING

_	RS	R/WX	_DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Extended	0	0	1	0	0	0	-	Scr	oll Amo	ount	- : Don't care

Set the dot scroll amount of the selected line to the smooth scroll line and shift it. The display shifts left by the dot scroll amount. The dot scroll amount is from 0 dot up to 5 dots. The dot scroll amount of over 6 dots is deemed to be 0 dot. To continue smooth scroll, execute the SMOOTH SCROLL CHARACTER command. The scroll amount can be reset by executing the SMOOTH SCROLL CHARACTER SHIFT, DISPLAY CLEAR or CURSOR HOME command.

The smooth scroll amount is cleared by resetting the smooth scroll amount character shift amount.

2.6 SETTING UP SMOOTH SCROLL LINE

	RS	R/WX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Extended	0	0	1	0	0	1	-	-	L_2	L ₁

Set the smooth scroll line. The line where "1" is set on L1, L2 is selected. To scroll two lines simultaneously, set "1" to L1 and L2.

- L2: 2nd line
- L1: 1st line

To scroll another line while a line is being scrolled, release the smooth scroll character amount and line setup, then set a new scroll line.

2.7 SMOOTH SCROLL CHARACTER SHIFT AMOUNT SETTING

	RS	R/WX	_DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Extended	0	0	1	0	1	S_4	S₃	S ₂	S ₁	S ₀

Shift the required number of characters of the selected line to the smooth scroll line.

S4	S3	S2	S1	S0	Shift Amount
0	0	0	0	0	Does not shift.
0	0	0	0	1	1 character shifts left.
0	0	0	1	0	2 characters shift left.
		:			:
1	0	0	0	0	16 characters shift left.
		:			:
1	1	1	1	1	31 characters shift left.

2.8 ICONRAM ADDRESS SETTING

	RS	R/WX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Extended	0	0	1	1	0	0	A ₃	A ₂	A ₁	A ₀

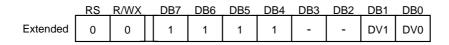
Set binary "A3A2A1A0" to the ICONRAM Address Counter.

After this command is executed, data is written from the CPU and read to ICONRAM. Write the mark display data which corresponds to each address of the ICONRAM for every 5 bits.

2.9 ICON BLINK RAM ADDRESS SETTING

	RS	R/WX	_DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Extended	0	0	1	1	0	1	A ₃	A ₂	A ₁	A ₀

Set binary"A3A2A1A0" to the ICON BLINK RAM Address Counter. When writing "1" in the ICON BLINK RAM, the respective marks blink. ICONRAM addresses correspond to respective ICON BLINK RAM addresses. After this command is executed, data is written from the CPU and read to ICON BLINK RAM.


2.10 (TEST)

	RS	R/WX	_DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Extended	0	0	1	1	1	0	D ₃	D_2	D ₁	D ₀

Testbits: $D_3 \sim D_0$ = all 0 at reset.

DO NOT write any values other than "0000" into this testbits.

2.11 REFERENCE VOLTAGE CHARACTERISTICS SELECT

Select the temperature characteristics for the reference voltage. The reference voltage also varies depending upon the temperature characteristics.

DV1	DV0	Temperature Characteristics(%/°C) △V _{REF}	Reference Voltage(Ta=25°C) V _{REF} (V)
0	0	– 0.13	1.7
0	1	0.01	1.7
1	—	0	VDD

2.12 FUNCTION SETTING

	RS	R/WX	_DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Extended	0	0	0	0	1	DL	Ν	MS	DT	-

The same as the function setting for the Normal Instructions.

2.13 BUSY FLAG/ADDRESS READ

_	RS	R/WX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Extended	0	1	BF	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀

The same as the functions for the Normal Instructions.

2.14 DATA WRITE

	RS	R/WX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	_
Extended	1	0	D ₇	D ₆	D ₅	D ₄	D ₃	D_2	D ₁	D ₀	

The same as the functions for the Normal Instructions.

2.15 DATA READ

	RS	R/WX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Extended	1	1	D ₇	D ₆	D ₅	D_4	D_3	D_2	D ₁	D ₀

The same as the functions for the Normal Instructions.

Instruction List

1. Normal Instructions

				-		-• •		arms					
Command					Cod	-			Description		Execution Time		
	RS	R/WX								DB0			V _{DD} =3V
NOP	0	0	0	0	0	0	0	0	0	0	Don't care.		
DISPLAY CLEAR	0	0	0	0	0	0	0	0	0	1	Writes the DDRAM.	space code in the entire	OSC 35 Clock
CURSOR HOME	0	0	0	0	0	0	0	0	1	СН	CH: 1/0=	Cursor Return/Cursor Home	1 μsec or less
ENTRY MODE	0	0	0	0	0	0	0	1	ID	S	ID: S:	1/0=Address CounterIncrement/Decrement1/0=Display Shift duringDDRAM write	1 μsec or less
DISPLAY ON/OFF	0	0	0	0	0	0	1	D	С	В	D: C: B:	1/0=Display ON/OFF1/0=Cursor DisplayON/OFFI/0=1/0=Cursor Position BlinkON/OFF	1 μsec or less
CURSOR DISPLAY SHIFT	0	0	0	0	0	1	SC	RL	-	-	SC: RL:	1/0= Whole Display Shift/Cursor Shift 1/0= Cursor/Display Right /Left Shift	1 μsec or less
FUNCTION SETTING	0	0	0	0	1	DL	N	MS	DT	I		8-bit/4-bit Data Length Interface 1-line x 24-column/2-line x 12- column Extended/Normal Interface 6-dot front/5-dot font	1 μsec or less
CGRAM ADDRESS SETTING	0	0	0	1	CGRAM Address						CGRAM A	ddress Setting	1 μsec or less
DDRAM ADDRESS SETTING	0	0	1	-	-	- DDRAM Address					DDRAM A	ddress Setting	1 μsec or less
BUSY ADDRESS READ	0	1	BF	0	0 Address Counter						BF: Address C	BUSY Output counter Read	1 μsec or less
DATA WRITE	1	0	Write Data								Write Data	a	1 μsec or less
DATA READ	1	1		Address Counter							Data Read	ł	1 μsec or less

Table 25 Normal Instructions

-:Don't care

2. Extended Instructions

Table 26 Extended Instructions

Command	Code										Description	Execution Time
	RS	R/WX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		V _{DD} =3V
POWER SAVE SETTING	0	0	0	0	0	0	0	0	0	PS	PS : 1/0= Power Save Operation/Normal Display	1 µsec or less
ICON ONLY DISPLAY BOOSTER DRIVE FREQUENCY	0	0	0	0	0	1	-	MD	DC1	DC0	MD : 1/0= Icon Only Display/Normal Entire Display DC1, DC0: Booster Drive Frequency Select	1 μsec or less
COM/SEG OUTPUT MODE SELECT BIAS SELECT	0	0	0	1	0	0	MLC	MLS	-	BS5	MLC: COM Output Mode MLS: SEG Output Mode BS5: 1 (1/5 Bias) 0 (1/4 Bias)	1 μsec or less
BLINK SELECT	0	0	0	1	0	1	-	-	BK1	BK0	BK1BK0 0 0 Black Blink 0 1 White Blink 1 0 Cursor Blink 1 1 Black/White Inverse Blink	1 μsec or less
SMOOTH SCROLL DOT SHIFT	0	0	1	0	0	0	-	Shif	Dot t Am	ount	Dot Shift Amount : Sets and executes the Dot Shift Amount in the Smooth Scroll Select lines.	1 μsec or less
SCROLL LINE SETTING	0	0	1	0	0	1	-	-	L2	L1	L1: Selects the 1st line to Smooth Scroll line.L2: Select the 2nd line to the Smooth Scroll line.	1 μsec or less
SMOOTH SCROLL CHARACTER SHIFT	0	0	1	0	1	Character Shift Amount					Character Shift Amount: Setting and Operation of the Character Shift Amount in the Smooth Scroll Select lines.	1 μsec or less
ICON RAM ADDRESS SETTING	0	0	1	1	0	0	Icon	n RAM	1 Adc	lress	Icon RAM Address Assignment	1 μsec or less
ICON BLINK RAM ADDRESS SETTING	0	0	1	1	0	1	R	Icon AM A			Icon Blink RAM Address Assignment/ Sets the Icon to blink.	1 μsec or less
** (TEST)	0	0	1	1	1	0		Tes	tbits		**	1 μsec or less
REFERENCE VOLTAGE CHARACTERISTI- CS SELECT	0	0	1	1	1	1	-	-	DV1	DV0	DV1 DV0 Characteristics Reference V 0 0 -0.13%/°C 1.7 V 0 1 0.01%/°C 1.7 V 1 * — VDD	1 μsec or less
FUNCTION	0	0	0	0	1	DL	N	MS	DT	-	DL:1/0= 8-bit/4-bit data Length Interface N:1/0= 1-line x 24-column/2-line x 12- column MS: 1/0= Extended/Normal Instructions DT: 1/0= 6-dot/5-dot font	1 μsec or less
BUSY ADDRESS READ	0	1	BF	0		Ad	dress	Cou	nter		BF : BUSY Output Address Counter Read	1 μsec or less
DATA WRITE	1	0		Write Data							Write Data	1 μsec or less
DATA READ	1	1		Read Data							Read Data	1 μsec or less

IMPORTANT: The FUNCTION SETTING, BUSY ADDRESS READ, DATA WRITE, and DATA READ commands are common to Normal and Extended Instructions.

** This is for Biastest. Testbits="all0" at reset. DO NOT write any values other than "0000" into this testbits.

Operation Description

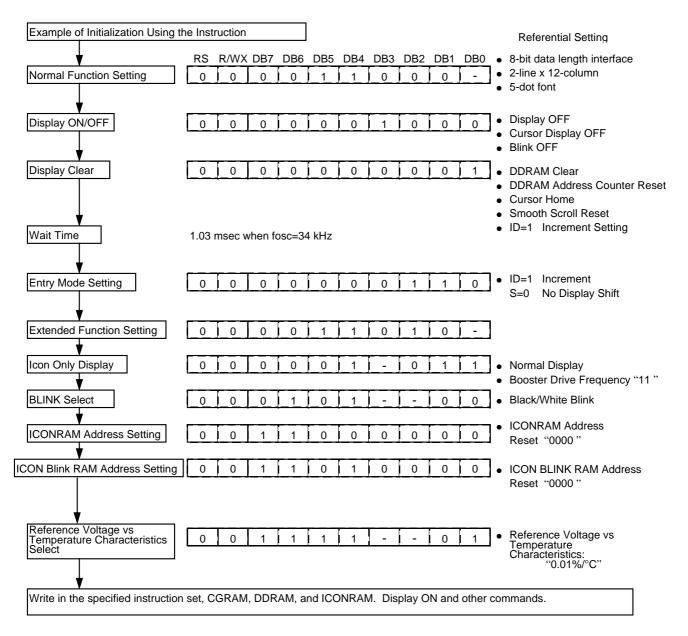
1. Powering ON

After powering ON, the S-4561A is initialized by inputting the RESX signal. In order to prevent the unstable state of the inside of the IC due to momentary stop or gradually raised power voltage waveform, reset hardware by inputting the RESX signal.

If the S-4561A is not initialized by inputting the RESX signal, the IC may malfunction. Chattering occurring in the RESX signal may lead to an initialization error. Input the signal free of chattering. Always connect and fix pins P/SX, FNC1 and FNC2 to V_{DD} or V_{SS} .

2. Reset

The following operations and instructions are executed by initialization through the RESX signal input:

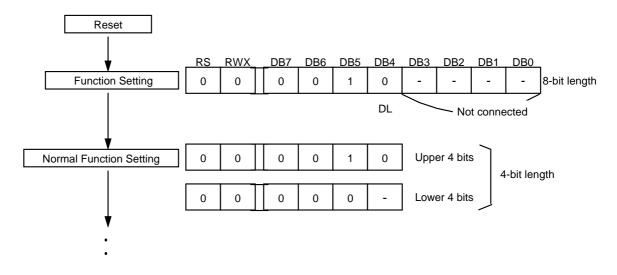

1	Entire Circuitry Reset	
2	Bias Select	BS5=1 (1/5 Bias)
3	Display OFF	D=0, C=0, B=0
4	Display Clear	
	DDRAM Address	Reset "00000"
	Smooth Scroll Dot shift Amount	Reset "000"
	Smooth scroll line	Reset "0000"
	Smooth Scroll Dot Shift Amount	Reset "00000"
5	Entry Mode	ID=1, S=0
6	Icon Only Display	OFF (MD=0)
	Booster Drive Frequency	01
7	Blink mode	Black blink "00"
8	ICONRAM Address	Reset "0000"
9	ICON BLINK RAM Address	Reset "0000"
10	(TEST)	Reset "0000"
11	Function Setting	Set to the normal instruction set
		DL=1, N=0, MS=0, DT=0
12	Address Counter	Select DDRAM
13	Reference Voltage Temperature Characteris	stics Select 00 (- 0.13%/ °C)
14	Power Save	After resetting, the state moves to PS=1.
	Booster	OFF
	LCD power Supply Voltage Controller	OFF
	Voltage Regulator	OFF
	Bias Resistor	OFF

Remark: After resetting, the state automatically moves to the Power Save mode.

3. Initialization by Instruction

When initializing the IC by instruction, input the necessary command and set to the appropriate mode, referring to the following order.

After powering ON, reset the state by inputting the RESX signal, instead of initializing the IC by the instruction.

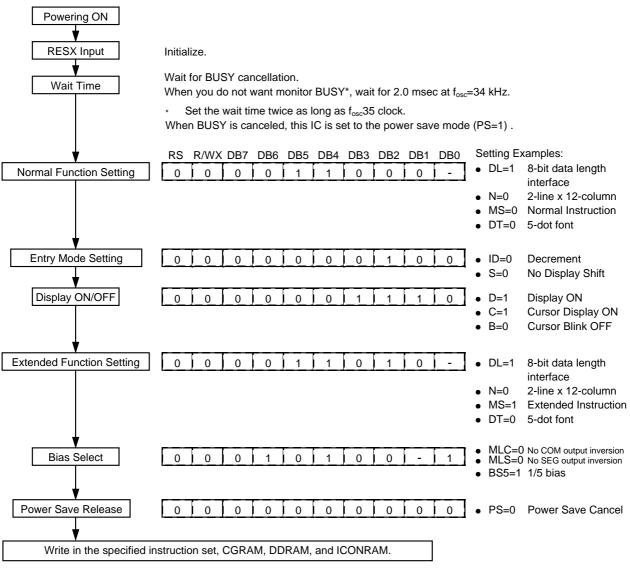


Initialization Examples

<4-Bit Data Length Interface>

When executing a 4-bit operation, it is necessary to set respective functions on a program. After resetting, first write the upper 4-bits of the function setting command to reset DL (DL = 0). Then this IC is set for the 4-bit data-length interface. Next write the function setting command again for each upper 4-bits and lower 4-bits to complete the function command. Then write commands to initialize this IC for 4-bit data-length interface. (See an example shown in the previous page.)

For the 4-bit data-length interface, the upper 4-bits are written first, followed by the lower 4-bits. The RS terminal for register selection is used to distinguish instruction from data for a command. For the 4-bit data-length interface, do not change the RS signal during the period when both the upper and lower 4-bits are written.



For the 4-bit data-length interface, open the lower 4-bit terminals of the data bus (DB3-DB0).

Notice that output short-circuit current will flow at READ phase if they are connected to the power supply (VDD or VSS)

4. Procedures from Powering ON to Display Start

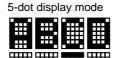
The procedures from powering ON to Display Start are as follows:

Mode Setting Examples after Powering ON

5. Instruction Execution Time

Any instructions other than the DISPLAY CLEAR are completed within the cycle time (tcyc) represented with the instruction input timing characteristics. For instance, when the instruction input cycle time is 500 μ sec, the instruction can be completed within 500 μ sec. Consequently, instructions can be input in succession without confirming the BUSY flag. Also, load to the MPU and the current consumption can be drastically reduced. Inputting the next command within the cycle time is prohibited.

In the DISPLAY CLEAR mode, it is necessary to write a space code in all of DDRAMs. For the write execution time, refer to page 18, "Instruction Explanation" of this specification.


6. Read and Write Display Data from and In MPU

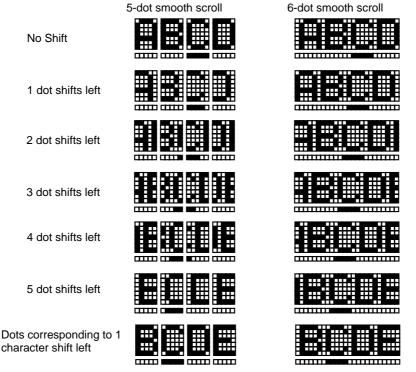

The Display Data is accessed from the MPU to DDRAM, CGRAM, ICONRAM or ICON BLINK RAM by executing the READ or WRITE command following the ADDRESS SETTING command of individual RAMs. Always execute the ADDRESS SETTING command before executing the READ command. When the ADDRESS SETTING command is not executed, correct display data cannot be read. After executing the READ or WRITE command, the column address is incremented or decremented depending upon the value of the ID of the ENTRY MODE Setting. Consequently, when the cycle time represented

7. Dot Display Mode

5- or 6-dot display mode can be selected by the FUNCTION SETTING command. The 5-dot display mode is used for the dot matrix for every character; and the 6-dot display mode is used for a full dot matrix.

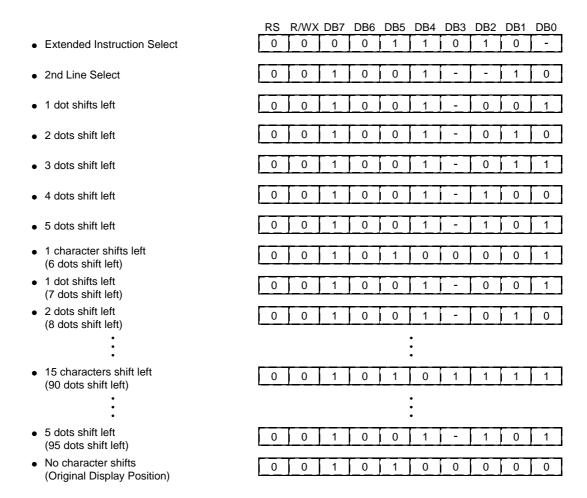
Display data written in the CGRAM, ICONRAM or other RAM on the 5-or 6-dot display mode is for every 5 bits, and there is no change in the data length regardless of the dot display mode. The 6-dot display mode controls data inside the IC so that left one column of each for every character is NOT-LIT. The cursor for the 6-dot display mode appears on the 8th line of the character in a 5-dot size.

Character Display Example for Every Dot Display Mode


Difference of Display Area for Every Dot Display Mode

5-dot mode display area	6-dot mode display area
2-line x 12-column+ 4-column non-displayed character	2-line x 10-column+ 6-column non-displayed character
1-line x 24-column+ 8-column non-displayed character	1-line x 20-column+ 12-column non-displayed character

8. Smooth Scroll


Right and left smooth scroll for every dot is possible by executing one ore more command. The lines to be scrolled smoothly can be selected freely and two lines can be scrolled at the same time.

Smooth scrolling is possible in both 5- and 6-dot display modes. In the 5-dot display mode smooth scroll, individual space rows are inserted between characters. This allows for easy-to-see smooth scroll display without deformation in characters. Also, the cursor and the blink shift together with characters.

Smooth Scroll Examples

Seiko Instruments Inc.

Remarks • After Dot Shift, set a wait time for the next shift so as to make the display legible.

• To execute the Smooth Scroll, shift characters left by the amount corresponding to the display column (including non-displayed characters) and input the instruction so that the amount of the shift is reduced.

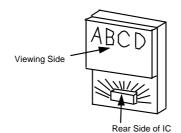
Examples of Smooth Scroll of 2nd Lines of a 5-Dot 2-Line x 12-Column Display

9. Icon Only Display

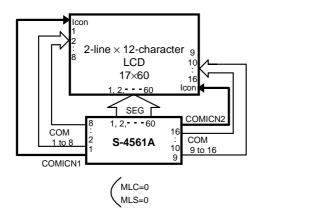
Regardless of the contents of the display data RAM (DDRAM), the icon only is displayed and the LCD panel is compelled to be off. Since the contents of the DDRAM do not change, the state is returned to the original display by canceling the lcon Only Display mode. While the icon only is being displayed, the LCD panel is driven at low power consumption. This allows for the reduction in the boosting level and also the reduction in the current consumption. Four levels of booster drive frequency can be selected by the lower 2 bits of the ICON ONLY DISPLAY command (refer to Instruction Explanation: page 18). The booster drive frequency differs depending upon the size of the LCD panel and wiring capacity. Determine the appropriate frequency on the actual LCD panel.

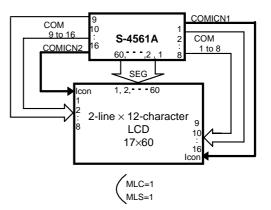
10. Power Save

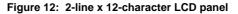
After inputting the POWER SAVE command, the CR oscillating circuit and the LCD power supply circuit stop, and the current consumption of the IC goes down nearly to the value during standstill simultaneously with display OFF. This is valid for reducing the current consumption when the display is not needed or during wait.

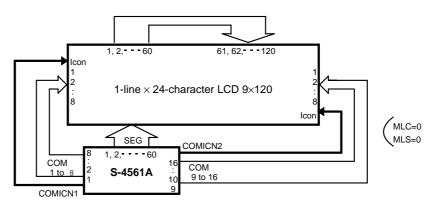

The DDRAM and instruction state still remains unchanged and is returned to the original display by canceling the Power Save.

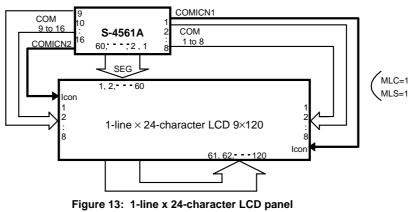
11. Connection to LCD

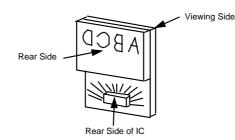

Common output terminals are mounted on both right and left of the chip. Common wiring is needed with respect to the panel configuration and also display columns.


Examples of Connection to LCD Panel


1. When the IC is mounted from the front view (Viewing Side):


N=0: 2 -line x 12 -character LCD panel




N=1: 1-line 24 -character LCD panel

Seiko Instruments Inc.

2. When the IC is mounted from the rear side:

N=0: 2 -line x 12 -character LCD panel

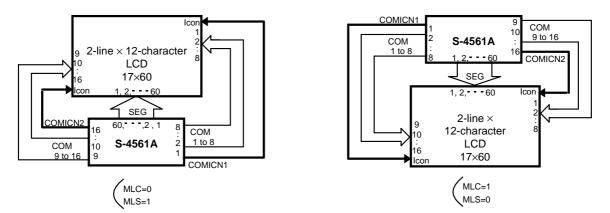


Figure 14: 2-line x 12-character LCD panel

N=1: 1 -line $\times\,$ 24 -character LCD panel

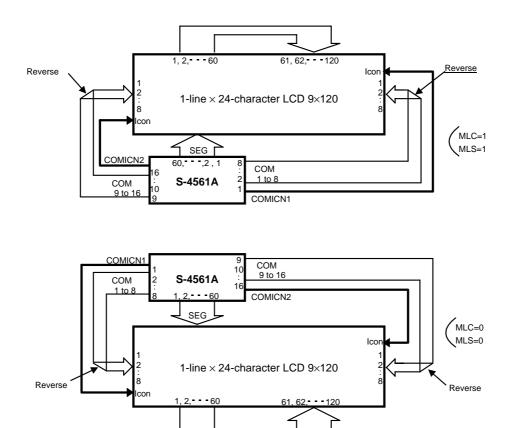
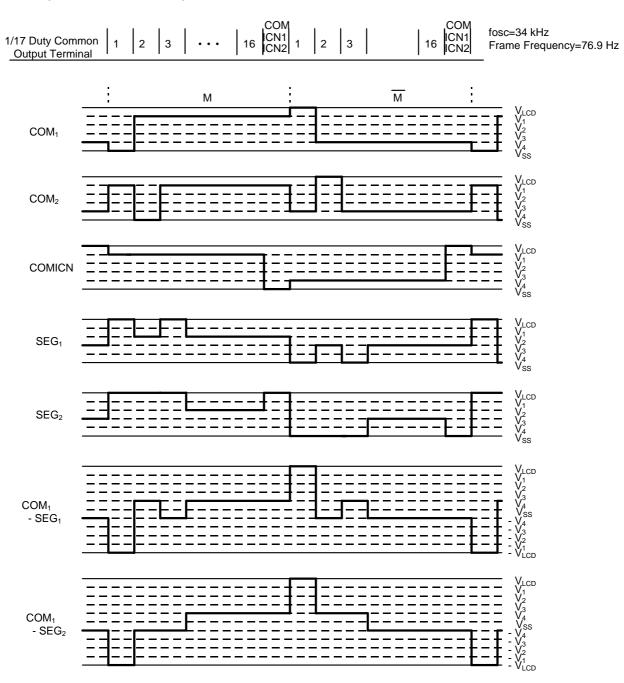



Figure 15: 1-line x 24-character LCD panel

Seiko Instruments Inc.

Examples of LCD Drive Output Waveform

Figure 16 Example of LCD Drive Output Waveform (1/5 bias)

External Bias Resistor vs LCD Drive Waveform

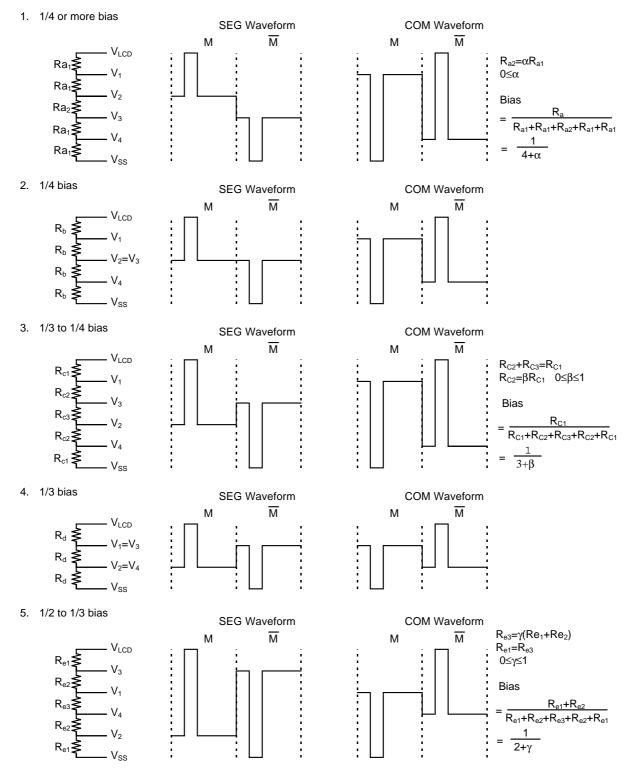


Figure 17 External Bias Resistor vs LCD Drive Waveform

Absolute Maximum Ratings

Table 27 Absolute Maximum Ratings

 $V_{DD}=0.0 V$

Parame	eter	Symbol	Ratings	Unit
Supply voltage		V _{DD}	-0.4 to +7.0	V
LCD drive voltage	1	V _{LCD}	-0.4 to +8.0	V
LCD drive voltage	2	V ₁ , V ₂ , V ₃ , V ₄	V _{LCD} -0.4	V
Input voltage		V _{IN}	-0.4 to V _{DD} +0.4	V
Output voltage		V _{OUT}	-0.4 to V _{DD} +0.4	V
Operating tempera	ture range	T _{opr}	-30 to +85	°C
Storage	Chip	T _{stg}	-55 to +125	°C
temperature range	ТСР		-55 to +100	

Remarks: • If your IC is used in the range exceeding the above absolute maximum ratings, IC's characteristics may drastically deteriorate and may lead to a breakdown of the device.

- Use this IC within the specified range of electrical characteristics. If not, the functions and reliability of the IC cannot be assured.
- When connecting a bias resistor externally, determine the LCD power supply voltage so that its state goes to $V_{LCD} \ge V_{DD}$ during display.
- · Notice that isolation of the IC from light exposure is not taken iinto account for this IC design.

DC Characteristics

1. Electrical Characteristics

Table 28 Electrical Characteristics

(Unless otherwise specified: V_{SS}=0 V, V_{DD}=3.0\pm0.3 V, Ta=-30 to 85 $^{\circ}\text{C})$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
Operating Voltage 1	V _{DD1}	Internal booster is used.	2.4	-	3.6	V	Note 1
Operating Voltage 2	V_{DD2}	External LCD power supply is used.	2.4	-	5.5	V	Note 1 Note 2
High-level Input Voltage	VIH		0.8×V _{DD}	-	V _{DD}	V	Note 3
Low-level Input Voltage	VIL		V _{SS}	-	$0.2 \times V_{DD}$	V	Note 3
High-level Output Voltage	V _{OH1}	I _{OH} =-0.5 mA	0.8×V _{DD}	-	-	V	Note 4
	V _{OH2}	I _{OH} =-50 μA	0.8×V _{DD}	-	-	V	OSC2
Low-level Output Voltage	V _{OL1}	I _{OL} =0.5 mA	-	-	$0.2 \times V_{DD}$	V	Note 4
	V _{OL2}	I _{OL} =50 μA	-	-	$0.2 \times V_{DD}$	V	OSC2
Pull-up Current	lυ	Ta=25°C, V _{DD} =3.0 V	-20	-10	-4	μA	RESX
Input Leak Current	I _{ILEAK}		-1.0	-	1.0	μA	Note 5
Output Current	I _{OLEAK}		-3.0	-	3.0	μA	Note 6
LCD Driver ON Resistor	R _{ON}	Ta=25°C, V_{LCD} =5.0 V 1/4-bias	-	3.0	5.0	kΩ	Note 7
Current Consumption During Standstill	I _S	Power Save	-	0.05	5.0	μA	Note 8
	I _{DD1}	Internal booster is used: During LC display Rf=500 k Ω V _{OUT} =6.0 V V _{LCD} =5.0 V	-	70.0	105.0	μΑ	Note 9
Operating Current	I _{DD2}	External LCD power supply is used: During LC display Rf=500 k Ω V _{LCD} =5.0 V	-	15.0	20.0	μA	Note 10
Oscillating Frequency	f _{OSC}	R _f =500 kΩ V _{DD} =3.0 V	27	34	41	kHz	
Reset Time	t _R		10	-	-	μs	Note 11
Reset Pulse Width	t _{RW}		20	-	-	μs	Note 12

2. LCD Power Supply Circuit Electrical Characteristics

2.1 When Using an Internal Booster: FNC1="H," FNC2="H"

			Vs	_{s=0} V, V _{DD} =	=3.0±0.3 V,	Ta=-30) to 85 °C
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
Operating Voltage	V_{DD1}	FNC1="H", FNC2="H"	2.4	-	3.6	V	Note 13
Boosting Output Voltage	V _{OUT}		4.8	-	7.2	V	
Voltage Regulator Output Voltage	V_{LCD1}		2.7	-	6.5	V	Note 14
LCD Power Supply Circuit Current Consumption 1	I _{LCD1}	V _{OUT} =6.0 V Double boosting V _{DD} =3.0 V V _{LCD} =5.0 V 1/4 bias Oscillating Frequency 34 kHz Display ON, Checker Display No Load of LCD Power Supply Circuit		55.0	85.0	μA	Note 15

Table 29 Electrical Characteristics

2.2 When Using an External LCD Power Supply: FNC1="L," FNC2="L"

Table 30 Electrical Characteristics

			Vs	_{ss} =0 V, VDD	0=3.0±0.3V	, Ta=-3	0 to 85°C
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
Operating Voltage 2	V_{DD2}	FNC1="L", FNC2="L"	2.4	-	5.5	V	Note 16
LCD Power Supply Circuit Operating Voltage 2	V _{LCD2}	FNC1="L", FNC2="L"	2.7	-	6.5	V	Note 17
LCD Power Supply Circuit Current Consumption 2	I _{LCD2}	V _{LCD2} =5.0 V 1/4-bias Oscillating Frequency 34 kHz Display ON, Checker Display No Load of LCD Power Supply Circuit		28.0	45.0	μΑ	Note 18

2.3 When Using an External Bias: FNC1="H," FNC2="L"

Table 31 Electrical Characteristics

			V _{SS}	=0 V, VDD=	=3.0±0.3 V,	Ta=-30) to 85 °C
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
Operating Voltage Range 2	V_{DD2}	FNC1="H", FNC2="L"	2.4	-	5.5	V	Note 19
LCD Power Supply Circuit Voltage 3	V _{LCD3}	FNC1="H" FNC2="L"	2.7	-	6.5	V	Note 20
Bias Voltage	V _{1,} V ₃		1.2	-	V _{LCD3} -0.4	V	Note 21
Input Voltage	$V_{2,}\;V_4$		0.4	-	V _{LCD3} -1.2		
LCD Power Supply Circuit Current Consumption 3	I _{LCD3}	V _{LCD3} =3.0V 1/3-bias Oscillating Frequency 34 kHz Display ON, Checker Display No Load of LCD Driver		10.0	15.0	μΑ	Note 22

0 0 1 0 0 1 / T 0 5 0 0

2.4 Reference Voltage Circuit

Table 32 Reference Voltage

				V _{SS} =	€U V, V _D	D=3.0±0.3	v, Ta=25 °C
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
Reference Voltage	V _{REF}	ΔV _{REF} =0.01% / °C	1.3	1.7	2.1	V	Note 23
		ΔV _{REF} =- 0.13% / °C	1.3	1.7	2.1		

3. Reference

Table 33 Input Pin Capacity

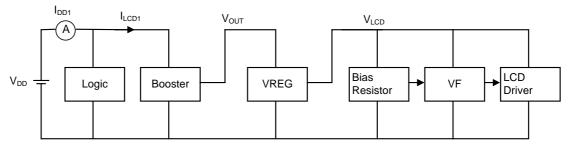
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
Input Pin Capacity	C _{IN}	Ta=25 °C	-	5	8	рF	Note 4

Note 1 Sharp variation in the supply voltage or input signal voltage due to strange noises may lead to a malfunction of the IC. Supply stable supply voltage and input signal voltage. If you change the level of the supply voltage intentionally, a malfunction may occur. NEVER change the level of the supply voltage.
Note 2 The maximum operating voltage of the logic is 5.5 V when an internal booster is not used.
Note 3 Pins RS, E, RWX, RESX, C86, P/SX, OSC1, FNC1, and FNC 2.

Pins D0 to D7 during display data write and command input. Fully swing the levels VIH and VIL of the input signal within the range of power supply voltage so that the state is VIH=VDD, VIL=VSS. When the level of VIH and VIL is the middle level of the supply voltage, the throughcurrent flowing through the input pin as well as the current consumption may be increased.

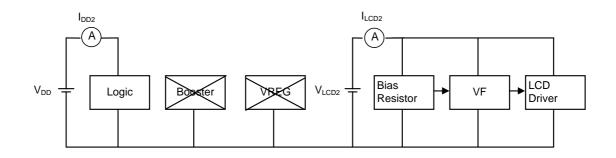
Note 4 Pins D0 to D7.

Note 5 Pins RS, E, RWX, RESX, C86, P/SX, FNC1, and FNC 2.


- Note 6 Pins D0 to D7 during write and high-impedance.
- Note 7 ON resistance between LCD drive output pins (SEG1 to SEG60, COM1 to COM16) and LCD drive bias voltage pins (V1, V2, V3, V4). Measure the current which flows after applying a 0.1-V difference between the LCD drive bias voltage pins (V1, V2, V3, V4) and LCD drive output pins in the external VLCD voltage input mode (FNC1, 2="HL").
- Note 8 Power save state. When turning the input pin to "Floating," the through-current flows. Connect and fix the input pins to VSS or VDD.
- Note 9Shows the current consumption during display including CR oscillation.It includes the current consumed by the booster, LCD supply voltage adjustment circuit, voltage regulator, LCD
bias resistor when using the internal booster. The LCD drive output pin is no load. It does not include the
current consumed by the LCD panel and wiring capacitor. Measure it without access from the MPU.
- Note 10 Shows the current consumption only for the logic during display including CR oscillation. It does not include the current consumed by the LCD power supply systems, such as the booster, LCD supply voltage adjustment circuit, and voltage regulator, when using the external LCD power supply. The LCD drive output pin is no load. It does not include the current consumed by the LCD panel and wiring capacitor. Measure it without access from the MPU.
- Note 11 Shows the wait time from when the reset ends at the rising edge of the RESX to when normal operation is possible.
- Note 12 Specifies the minimum reset pulse width.
- Note 13 Since the maximum output voltage of the booster is 7.2 V, the maximum operating voltage of the LCD power supply circuit including the logic and the booster is 3.6 V.

Seiko Instruments Inc.

- Note 14 Set output voltage VLCD of the voltage regulator so that VOUT V LCD≥0.2 V and the output voltage is 6.0 V at maximum.
- Note 15 Shows the value of the current consumed by the booster, voltage regulator, voltage follower, internal bias resistor, and LCD driver. It does not include the value IRREG=V5/(R1+R2+R3) of the current flowing through external resistors R1, R2, and R3. Also, it does not include the value of the current consumed by the LCD panel. All of the current consumed during display are IDD1. Current consumed by the logic is IDD2. ILCD1 cannot be measured. ILCD1 IDD2 is equivalent to ILCD1.
- Note 16 Since the booster is not used, the maximum operating voltage of the logic is 5.5 V.
- Note 17 Shows the operating voltage range of the voltage follower, internal bias resistor, and LCD driver.
- Note 18 Shows the current consumed by the voltage follower, internal bias resistor, and LCD driver. It does not include the current consumed by the LCD panel. The current consumed during display is IDD2 + ILCD2. The current consumed by only the logic is ILCD2.
- Note 19 Since the booster is not used, the maximum operating voltage of the logic is 5.5 V.
- Note 20 Shows the operating voltage range of the voltage follower and LCD driver.
- Note 21 V1, V2, V3 and V4 are limited by the voltage level within the input voltage range. Therefore, the bias ratio can be freely determined.
- Note 22 Shows the current consumed by the voltage follower and LCD driver. It does not include the current consumed by the LCD panel. The current consumed during display is IDD2 + ILCD3. The current consumed by only the logic is ILCD2.
- Note 23 Shows different characteristics depending upon the temperature coefficient selected by the corresponding command.
- Note 24 When the frame frequency and the fluorescent lamp's frequency are the same, the display screen may flicker. Taking into consideration fluctuation in the IC and the oscillating resistor, as well as the temperature characteristics, determine the appropriate oscillating frequency.


■ Current Consumption Measurement Examples

1. Current Consumption of (FNC1, 2="H H") when using a booster:

Remark: The current consumed by the LCD power supply circuit I_{LCD1} cannot be measured. It is equivalent to $I_{LCD1} = I_{DD1} - I_{DD2}$.

2. Current Consumption of (FNC1, 2="L L") when using an external power supply:

3. Current Consumption of (FNC1, 2="H L") when using an external bias resistor:

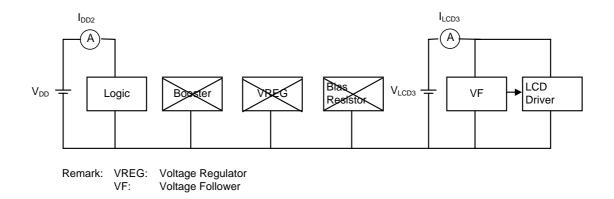


Figure 18 Current Consumption Measurement Examples

Timing Characteristics

1. Parallel Interface

1.1 80-Family MPU Read/Write Timing Characteristics

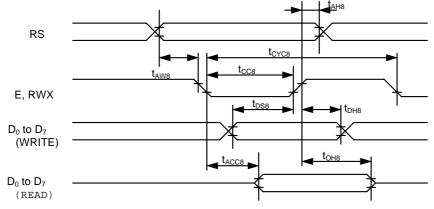


Figure 19 80-Family MPU Read/Write Timing Characteristics

		, , , , , , , , , , , , , , , , , , , ,					
			(Ta=-30 t	<u>o 85 °C</u>	, V _{DD} =:	<u>3.0±0.3</u> ∖
Signal	Symbol	Designation	Conditions	Min.	Max.	Unit	Note
RS	t _{AH8}	Address Hold Time		40	_	ns	
	t _{AW8}	Address Setup Time		40	_	ns	
E, RWX	t _{CYC8}	System Cycle Time		1000		ns	
	t _{CC8}	Control Pulse Width		200		ns	
	t _{DS8}	Data Setup Time		160		ns	
D_0 to D_7	t _{DH8}	Data Hold Time		40		ns	
	t _{ACC8}	Data Read Access Time	CL=15 pF		180	ns	
	t _{OH8}	Output Disable Time	CL=15 pF	10	120	ns	

Remarks: • Rise/fall time of the input signal is 15 sec. or less.

• Timing is specified at 20% or 80% of the signal waveform.

1.2 68-Family MPU Read/Write Timing Characteristics

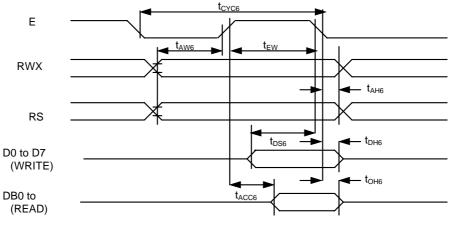


Figure 20 68-Family MPU Read/Write Timing

Table 35	68-Family MPU Read/Write	Timing Characteristics When VDD=3 V
----------	--------------------------	-------------------------------------

		, .	(Ta=-3	80 to 85 °	C, VDD	0=3.0±0	.3 V)
Signal	Symbol	Designation	Conditions	Min.	Max.	Unit	Note
	t _{CYC6}	System Cycle Time		1000		ns	
RS, RWX	t _{AH6}	Address Hold Time		40		ns	
	t _{AW6}	Address Setup Time		40		ns	
	t _{DS6}	Data Setup Time		160		ns	
D_0 to D_7	t _{DH6}	Data Hold Time		40		ns	
	t _{ACC6}	Access Time	CL=15 pF		180	ns	
	t _{OH6}	Output Disable Time	CL=15 pF	10	120	ns	
E	t _{EW}	Enable Pulse Width	READ	200		ns	
			WRITE	160		ns	

Remarks: •

Rise/fall time of the input signal is 15 sec. or less. Timing is specified at 20% or 80% of the signal waveform.

2. Serial Interface

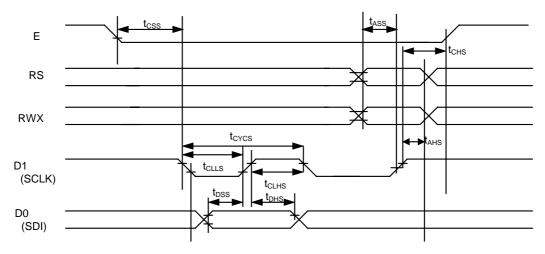
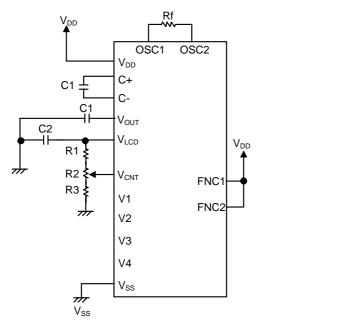
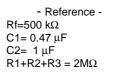


Figure 12 Serial Interface Read/Write Timing

Table 36 Serial Interface Timing Characteristics When VDD=3V
--


(Ta=-30 to 85 °C, V_{DD}=3.0±0.3 V)

Signal	Symbol	Designation	Conditions	Min.	Max.	Unit	Note
E	tcss	Chip Select Setup Time		0		ns	
	tCHS	Chip Select Hold Time		50		ns	
RS, RWX	tASS	Address Setup Time		50		ns	
	tans	Address Hold Time		50		ns	
D0	tDSS	Data Setup Time		50		ns	
(SDI)	t DHS	Data Hold Time		50		ns	
D1	tCYCS	Clock Cycle Time		250		ns	
(SCLK)	tCLLS	Clock L Time		100		ns	
	tCLHS	Clock H Time		100		ns	


Remarks: •

Rise/fall time of the input signal is 15 sec. or less. Timing is specified at 20% or 80% of the signal waveform. ٠

Examples Application Circuits

• When using an internal LCD power supply circuit (doubler):

• When using external LCD power supply:

• When an external bias resistor is connected:

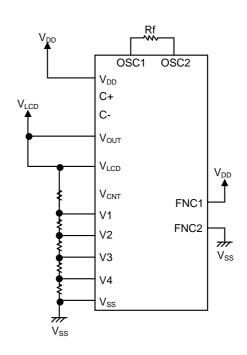


Figure 22 Examples Application Circuits

Upper	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)						•		.						Ċ	
0001	CG RAM (2)						•===	-							•	
0010	CG RAM (3)			2				₽ .				•	IIJ	×		
0011	CG RAM (4)					:	.	•	•===				••••		Ξ.	÷
0100	CG RAM (5)	Ó							•		•••		.			
0101	CG RAM (6)							.	•			···	•••••			
0110	CG RAM (7)		ŝ	6		V	Ť	V			•••••	†Ţ	••••		p	
0111	CG RAM (8)	Ń	3	ř				IJ.	:		•••••					π
1000	CG RAM (1)	•••••	Ç	8		X	ŀ	X			·1		•••••• •••••			X
1001	CG RAM (2))	9		Y		·			:	Ĵ	ļ		•• 🛔	·
1010	CG RAM (3)	ċ	*	# #				•••••						Ŀ	j	
1011	CG RAM (4)	•••••	•••	# ;?	K		K	ł		.	. #				X	.
1100	CG RAM (5)										•	,i				
1101	CG RAM (6)												••••			•
1110	CG RAM (7)	«			 -	•••	i"i		Ä			12		•••	ľ.	
1111	CG RAM (8)	*	•	?				÷			• • • •	! !				

Chart 002: Relationship between Character Codes and Character Patterns