High-Speed, Low ron, SPDT Analog Switch (2:1 Multiplexer)

FEATURES

- Operates From Single $2 \sim 5.5 \mathrm{~V}$
- SC70-6 Package
- $5-\Omega$ Switch Connection Between Ports
- Minimal Propagation Delay
- TTL Compatible Input Level
- RoHS Compliant

Product Is Completely Pb-free

APPLICATIONS

- Cellular Phones
- PDAs
- GPS
- MP3
- Data Acquisition

DESCRIPTION

The DG2307 is a single-pole-double-throw switch/2:1 mux designed for 2 - to $5.5-\mathrm{V}$ applications. Using Vishay Siliconix proprietary sub-micro CMOS process, the DG2307 achieves low on-resistance, low power consumption. It is $1.6-\mathrm{V}$ TTL logic compatible across the operation voltage range. With its low r_{ON} and low parasitic capacitance character, it is ideal for clock signal and high speed data stream switching. It has low insertion lost and negligible propagation delay.

The DG2307 can handle both analog and digital signals and
permits signals to be transmitted in either direction. When Bn pin is at off status, the path will have a high impedance with respect to the output. Break before make is guaranteed.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. For analog switching products manufactured with 100\% matte tin device terminations, the lead (Pb)-free "-E3" suffix is being used as a designator.

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Top View

Device Marking: G1

TRUTH TABLE	
Logic Input (S)	Function
0	$\mathrm{~B}_{0}$ Connected to A
1	$\mathrm{~B}_{1}$ Connected to A

ORDERING INFORMATION		
Temp Range	Package	Part Number
-40 to $85^{\circ} \mathrm{C}$	SC70-6	DG2307DL-T1-E 3

Power Dissipation (Packages) ${ }^{\text {b }}$
$6-P i n ~ S C 70{ }^{c}$
250 mW
Notes:
a. Signals on A, or B or S exceeding $V+$ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC Board
c. Derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS

Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.25 \mathrm{~V} \text { to } 0.7 \mathrm{~V}+{ }^{\mathrm{e}}$		Temp ${ }^{\text {a }}$	$\begin{aligned} & \text { Limits } \\ & -40 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$			Unit	
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$			
DC Characteristics									
High Level Input Voltage	$\mathrm{V}_{\text {SH }}$		$=2.3$ to 5.5 V		Full	0.7 V+		$0.3 \mathrm{~V}+$	V
Low Level Input Voltage	V_{SL}	$\mathrm{V}+=2.3 \text { to } 5.5 \mathrm{~V}$		Full					
On Resistance	R_{ON}	$\mathrm{V}+=4.5 \mathrm{~V}$	$\mathrm{VBN}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}$	Full		4	Ω		
			$\mathrm{VBN}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}$	Full		9		12	
		$\mathrm{V}+=3.0 \mathrm{~V}$	$\mathrm{VBN}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}$	Full		6		9	
			$\mathrm{VBN}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}$	Full		13.5		20	
On Resistance Matching Between Channels	$\Delta \mathrm{R}_{\text {ON }}$	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}$		Room		0.32			
		$\mathrm{V}+=$	$\mathrm{VN}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}$	Room		0.31			
Input Leakage Current	Is		. $5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=5.5 \mathrm{~V}$	Room Full	$\begin{aligned} & \hline-0.1 \\ & -1.0 \end{aligned}$		$\begin{gathered} \hline 0.1 \\ -1.0 \end{gathered}$		
Off Stage Switch Leakage	$\mathrm{I}_{\mathrm{BN} \text { (off) }}$		$\mathrm{V}, \mathrm{V}_{\mathrm{A}} \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V} / 5.5 \mathrm{~V}$	Room Full	$\begin{gathered} \hline-0.1 \\ -1.0 \end{gathered}$		$\begin{gathered} \hline 0.1 \\ -1.0 \end{gathered}$	$\mu \mathrm{A}$	
On State Switch Leakage	$\mathrm{I}_{\mathrm{BN} \text { (on) }}$		$\mathrm{V}, \mathrm{V}_{\mathrm{A}} \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V} / 5.5 \mathrm{~V}$	Room Full	$\begin{aligned} & \hline-0.1 \\ & -1.0 \end{aligned}$		$\begin{gathered} \hline 0.1 \\ -1.0 \end{gathered}$		

Power Supply

Power Supply Range	V+		Full	2	5.5	
Quiescent Supply Current	$1+$	$\mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=\mathrm{V}+$ or GND	Room Full		$\begin{gathered} 1 \\ 10 \end{gathered}$	$\mu \mathrm{A}$

SPECIFICATIONS

Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.25 \mathrm{~V} \text { to } 0.7 \mathrm{~V}+{ }^{\mathrm{e}}$	Temp ${ }^{\text {a }}$	Limits -40 to $85^{\circ} \mathrm{C}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	

AC Electrical Characteristice

Prop Delay Time ${ }^{\text {f }}$	$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	$\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$	$\mathrm{V}+=2.3$ to 2.7 V	Full		1.2	ns
			$\mathrm{V}+=3.0$ to 3.6 V	Full		0.8	
			$\mathrm{V}+=4.5$ to 5.5 V	Full		0.3	
Output Enable Time ${ }^{\text {f }}$	$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PZH }}$	$\begin{aligned} & V_{\text {LOAD }}=2 \times \mathrm{V}+\text { for } \mathrm{t}_{\text {PZL }} \\ & \mathrm{V}_{\text {LOAD }}=0 \mathrm{~V} \text { for } \mathrm{t}_{\text {PZH }} \end{aligned}$	$\mathrm{V}+=2.3$ to 2.7 V	Room Full		$\begin{aligned} & 5.9 \\ & 6.2 \end{aligned}$	
			$\mathrm{V}+=3.0$ to 3.6 V	Room Full		$\begin{aligned} & \hline 4.1 \\ & 4.5 \end{aligned}$	
			$\mathrm{V}+=4.5$ to 5.5 V	Room Full		$\begin{aligned} & \hline 2.6 \\ & 2.9 \end{aligned}$	
Output Disable Time ${ }^{\text {f }}$	$t_{\text {PLZ }} / t_{\text {PHZ }}$	$V_{\text {LOAD }}=2 \times V+$ for $t_{\text {PLZ }}$ $\mathrm{V}_{\text {LOAD }}=0 \mathrm{~V}$ for $\mathrm{t}_{\text {PHZ }}$	$\mathrm{V}+=2.3$ to 2.7 V	Room Full		$\begin{aligned} & \hline 5.9 \\ & 6.2 \end{aligned}$	
			$\mathrm{V}+=3.0$ to 3.6 V	Room Full		$\begin{aligned} & \hline 4.1 \\ & 4.5 \end{aligned}$	
			$\mathrm{V}+=4.5$ to 5.5 V	Room Full		$\begin{aligned} & \hline 2.6 \\ & 2.9 \end{aligned}$	
Break-Before-Make Time ${ }^{\text {d }}$	$t_{\text {BBM }}$	$\mathrm{V}+=2.3$ to 2.7 V		Full	0.5		
		$\mathrm{V}+=3.0$ to 3.65 V		Full	0.5		
		$\mathrm{V}+=4.5$ to 5.5 V		Full	0.5		
Charge Injection ${ }^{\text {d }}$	Q	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{gathered}$	$\mathrm{V}+=5 \mathrm{~V}$	Room		7	pC
			$\mathrm{V}+=3.3 \mathrm{~V}$	Room		3	

Analog Switch Characteristics

Off Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{V}+=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=10 \mathrm{MHz}$	Room	-57.6	dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room	-58.7	
-3-db Bandwidth ${ }^{\text {d }}$	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	Room	250	MHz

Capacitance

Control Pin Capacitance ${ }^{\text {d }}$	C_{IN}	$\mathrm{V}+=0 \mathrm{~V}$	Room	4.9	pF
B Port Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {IO-B }}$	$\mathrm{V}+=5 \mathrm{~V}$	Room	6.5	
A Port Capacitance When Switch Enable ${ }^{\text {d }}$	$\mathrm{ClO}_{10-\mathrm{A} \text { (on) }}$		Room	18.5	

Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
c. Typical values are for design aid only, not guaranteed nor subject to production testing.
d. Guarantee by design, nor subjected to production test.
e. $\quad \mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Guaranteed by design and not production tested. The bus switch propagation delay is a function of the RC time constant contributed by the on-resistance and the specified load capacitance with an ideal voltage source (zero output impedance) driving the switch.

LOGIC DIAGRAM (POSITIVE LOGIC)

Figure 1.

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ UNLESS NOTED)

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

AC LOADING AND WAVEFORMS

TEST	SW
$t_{\text {PLH }} / t_{\text {PHL }}$	Open
$t_{\text {PLZ }} / t_{\text {PZL }}$	$V_{\text {LD }}$
$t_{\text {PHZ }} / t_{\text {PZH }}$	GND

Figure 2. AC Test Circuit

Figure 3. AC Waveforms

Notes:

a. C_{L} includes probe and jig capacitance.
b. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
c. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
d. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
e. The outputs are measured one at a time with one transition per measurement.
f. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
g. $t_{P Z L}$ and $t_{P Z H}$ are the same as $t_{\text {dis }}$.
h. $t_{\text {PLH }}$ and $t_{P H L}$ are the same as $\mathrm{t}_{\text {dis }}$.
i. $\quad V_{L D}=2 V+$.

TEST CIRCUITS

Figure 4. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 5. Charge Injection

Figure 6. Off-Isolation

[^0] http://www.vishay.com/ppg?73361.

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see

